Published: 31st July 2021

Suspended Road System on Peat: A Case Study in Sibu, Malaysia

*Jen Hua Ling, Huong Hun Ting, Yong Tat Lim, Wen Kam Leong and How Teck Sia

School of Engineering and Technology, University College of Technology Sarawak, 96000 Sibu, Sarawak, Malaysia

Abstract: Road construction on peat is challenging due to the characteristics of high compressibility and low shear strength, which lead to excessive settlements and various kinds of distress and damage of pavement. To overcome this problem, the suspended road system can be used. In this study, two types of suspended road systems available in Sibu were investigated, namely suspended slab rigid pavement and suspended flat slab system with the flexible pavement. Desk study and site investigation were carried out on both systems, where their performances were evaluated in terms of the structural responses and the physical distresses of pavements. The purpose was to gain understandings of the system as a reference for the industrial practitioners in selecting suitable systems for road construction on peat. Both the systems performed well on peat and had eliminated the differential settlement of pavements and prevented various kinds of distress and damage associated with it. The rigid pavement made of the suspended slab was found cheaper and more durable than the flexible pavement on the suspended flat slab. Its ride quality was however inferior to the flexible pavement. Also, the space underneath the suspended slab system may be a concern to the neighbouring communities as a habitat for pests and wildlife.

Keywords: Suspended road system, flexible pavement, peat, pile foundation, case study.

INTRODUCTION

In Malaysia, 8% of the land area (2,457,730 ha) is covered with peat. 69.11% of the area is in East Malaysia, Sarawak (1,697,847 ha)[1]. In Sarawak, Sibu and Mukah divisions cover 35.4% of the peatland (600,387 ha), which is the largest in the state [1] (Figure 1).

Figure 1: Distribution of peat in Sarawak (Source: Department of Irrigation & Drainage Sarawak, 2020)

Peat is soft soil rich in fibrous organic matter [2]. It is brownish-black in colour and has distinctive odours [3]. The organic and moisture contents in peat are extremely high [4];[5]. It is predominantly made up of decayed organic matter ($\geq 65\%$) and mineral substances $(\geq 35\%)$ [6]. For peat in Sarawak, the contents of natural water and organic can reach 2207% and 98% respectively [2].

Peat has high compressibility (compression index, $C_c = 1.045$ to 1.64) and low shear strength (undrained shear strength $C_u \le 10$ kPa) [4];[5];[7]. The groundwater level in peat is rather high, which is normally near the ground surface [7]. These characteristics make the construction on peat challenging, particularly the preconstruction difficulties, post-construction failures, high cost of construction and maintenance, etc. [3].

(a) Road settlement at a commercial lot
 (b) Post-construction settlement of a residential building
 (c) Figure 2: Settlement problem of peat in Sibu

Corresponding Author: Jen Hua Ling. University College of Technology Sarawak (UCTS), Email: lingjenhua@ucts.edu.my

Figure 2 shows the settlement problem of peat. The total settlement can surpass 300 mm within 1 year of construction and the differential settlements can exceed 1:150 [8]. This can cause instability and affect the service life of the structure building on peat. For that, peat is normally avoided for construction [5]. However, due to the increasing population, scarcity of land and necessity of economic growth, the infrastructure development on peatland is sometimes inevitable [9].

For road construction, the conventional displacement method is commonly used. It involves building road embankments with heavy materials, such as aggregates, rock and other crushed paving materials, to displace the peat for higher bearing capacity of road base. This method is ineffective as the fibres in peat hinder the displacement, and the displaced peat can affect the adjacent structures within 5 times the peat depth [10]. The road suffers serious differential settlement from time to time and requires maintenance, which incurs high maintenance costs in long term [7].

Alternatively, the partial replacement method may be applied. A manageable depth of peat within 3 m is excavated and replaced with sand fill materials for higher bearing capacity [8]. This method improves the efficiency of displacing peat by (a) removing the fibrous peat deposit near the ground surface and (b) reducing the amount of peat to be displaced [10]. The total settlement would be less than the conventional displacement method, and the differential settlement is normally within 150 mm in 2 years of construction [7]. However, this settlement can still cause regional distresses that degrade durability and ride quality of road [11]. Moreover, more than 90% of the peat area in Sibu is deeper than 1.5 m [12], some are well over 10 m [7]. This makes the partial replacement method uneconomical.

Another method of road construction is the suspended system. It is a suspended slab system supported by deep foundations (Figure 3). The loads (i.e. self-weight, permanent load, traffic load, etc.) are carried by reinforced concrete (RC) slabs and transferred to the hard stratum underneath the peat through piles. This method is suitable for the peat greater than 3 m depth [11], which is effective in eliminating the differential settlement. The construction cost is about 50% higher than the conventional displacement and the partial displacement methods [11].

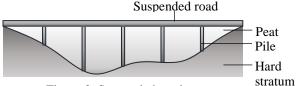


Figure 3: Suspended road system

Since 2015, the local authority, Sibu Municipal Council (SMC) had enforced the allowable settlement of a newly developed area to be within 200 mm in 2 years

of construction. For the development on deep peat, this requirement can only be confidently achieved by the suspended road system. This makes it a sensible choice of road construction for the local developers.

With that, a case study was carried out on the suspended road systems available in Sibu to investigate the performance of the systems in various aspects. The purpose was to gain understandings of the systems for reference of the local authorities, developers and professional engineers in selecting suitable suspended road systems for the developments on peat.

MATERIALS AND METHODS

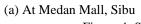
The study was carried out in two stages; desk study and site investigation. For desk study, documents and research articles were reviewed to acquire the characteristics of peat, the construction methods and the suspended road systems available in Sibu. Consulting the relevant manuals and guides, a rating system was developed to assess the distresses of the pavement. The assessment criteria were ensured objective, explicit, measurable, thorough and without redundant.

Then, a site investigation was conducted to inspect the distresses and damages on the suspended road system using the rating system developed. Visual inspection and on-site measurements were carried out to assess the service conditions of the suspended road systems.

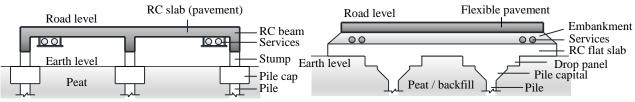
RESULTS AND DISCUSSION

Structural Response

There were two types of suspended road systems found in Sibu, namely (a) suspended slab rigid pavement system (hereafter referred to as "SS system") and (b) suspended flat slab with flexible pavement (hereafter referred to as "SFS system") [11]. The former was found at Medan Mall Sibu, while the latter was at Jalan Chew Sik Hiong Sibu (Figure 4). The characteristics of the two systems are presented in Figure 5 and Table 1.


Both systems were supported by piled foundations that transferred the load directly to the hard stratum underneath the peat.

The SS system at Medan Mall was elevated from the peat surface for about 2 m. There was a large space between the ground and the platform levels, which was shaded, wet and overgrown with vegetation. It became a habitat of pests and wildlife like rats, snakes, lizards and mosquitoes, which may be a concern to the neighbourhood nearby.


To overcome the problem, concrete block walls were constructed as barriers along the pedestrian paths to prevent the accessibility of the public and to isolate the wildlife habitat from the community (Figure 6). As for the inaccessible areas, no barrier was provided. Thus far, there was no reported case on the hazards of health and safety associated with it.

Suspended Road System on Peat: A Case Study in Sibu, Malaysia

(b) At Jalan Chew Sik Hiong, Sibu Figure 4: Suspended road system studied

(a) Suspended slab rigid pavement system

(b) Suspended flat slab with flexible pavement Figure 5: Types of suspended slab system

(b) No wall at inaccessible places (a) Concrete block wall along pedestrian path Figure 6: Public accessibility control underneath the platform

	Table 1: Characteristics of the suspended road system				
Suspended	Suspended slab rigid pavement (SS)	Suspended flat slab with flexible pavement			
road system		(SFS)			
Location /	Medan Mall, Sibu / 2.2928° N, 111.8421° E	Jalan Chew Sik Hiong, Sibu / 2.2940°N,			
Coordinates		111.8358°E			
Description	A platform made of RC slabs and beam.	A platform made of RC flat slab sitting on			
	Loads were transferred to the ground through	piles. No beam, stump and pile cap were			
	the piled foundations comprising the stumps,	required. Loads were transferred to the ground			
	pile caps and piles.	through the piles.			
Pile	250 mm RC square pile (capacity \approx 40 tonnes)	200 mm RC square pile (capacity \approx 30 tonnes)			
foundation	with 3 m to 8.5 m spacing.	with 2 m spacing.			
Pavement	RC slab acted as the rigid pavement.	Flexible pavement (bituminous road) was			
type		constructed on a reinforced concrete catchment			
Platform	The road platform was elevated from the peat	The road platform was directly in contact with			
level	surface for about 2 m.	the peat surface.			
Drainage	RC drain was used.	RC drain was used.			
system					
Services and	The services and utilities were fixed under the	The services and utilizes were laid under the			
utilities	RC slab above the peat.	flexible pavement above the flat slab.			

Table 1.	Characteristics	of the	suspended r	oad system
	Characteristics	or the	suspended I	Uau system

The SFS system at Jalan Chew Sik Hiong was constructed in contact with the ground surface. Backfill was done to the intended platform level during the construction as a part of formworks. The system had no beam. Thus, less formwork and steelworks were required, and this simplified the construction process of the superstructure

However, to prevent failures due to punching shear and excessive deflection, a shorter span and thicker slab was used in SFS system. Drop panels and pile capitals were provided to increase the effective shear area for higher resistance to punching shear at the pile perimeter. The piles were closely spaced at 2 m, as compared with the 3 m to 8.5 m spacing of the SS system (Table 1). This increased the total number of pile driving points, and hence, the piling works would require a longer duration.

The SFS system at Jalan Chew Sik Hiong was used to support the flexible pavement and its embankment. For that, the permanent loads acting on the SFS system were higher than the SS system that used the slab as the rigid pavement. Nevertheless, it gave a better ride quality than the rigid pavement.

For the SS system at Medan Mall, the services and utilities were placed underneath the platform. The postconstruction maintenance and upgrading works of the services were done under the platform with minimum interruption of traffic flow. There was ample working space underneath the platform despite the poor working environment, which was wet, dark, poor hygiene and may have safety concerns with the wildlife. Some maintenance works may involve hacking of RC slab to create passages for the services.

As for the SFS system at Jalan Chew Sik Hiong, the services and utilities were laid within the road embankment between the flexible pavement and the flat slab. The post-construction maintenance and upgrading works would have been done from above and this would interrupt the traffic flow.

Distress and Damage

Visual inspection was performed on-site to assess the service conditions of the SS and SFS systems. The distresses and damages on the rigid and flexible pavements were identified and rated based on the levels of severity outlined in Tables A1 and A2 respectively, as developed from the desk study.

The distresses found on the rigid pavement at Medan Mall included surface deterioration, patching deterioration, polished aggregate, longitudinal cracks and transverse cracks (Figure 7) at low to medium levels of severities (Table 2). The distresses were mainly caused by (a) repeated abrasions by traffic, (b) expansion and shrinkage movement due to daily thermal cycle, (c) progressive deterioration by traffic loads and (d) poor bond between the construction joints.

(c) Patching (d) Cracks at (e) Longitudinal (f) Transverse deterioration construction cracks cracks joint Figure 7: Distresses on rigid pavement at Medan Mall

Se	Severity level*1		
Ν	L	Μ	Н
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 2: Distress on the	he rigid n	pavement at	Medan Mall

*¹N – Not detected, L – Low severity, M – Medium severity, H – High severity

²Severity level not explicitly defined in Table A1. It was rated by the impression of the inspector.

The distresses found on the flexible pavement at Jalan Chew Sik Hiong were potholes, ravelling and patching (Figure 8) at moderate severity (Table 3). The distresses were mainly due to (a) repeated abrasions by traffic, (b) progressive deterioration by traffic loads, (c) seepage of water and (d) poor binding of asphalt pavement.

(a) Potholes (b) Ravelling (c) Patching Figure 8: Distresses on flexible pavement at Jalan Chew Sik Hiong

Table 3: Distress on the pavement at Jalan Chew Sik Hiong

Thong	Se	everity	y level	*1
Distress	Ν	L	Μ	Н
Longitudinal Cracking				
Pavement Edge Cracking				
Transverse Cracking				
Alligator Cracking				
Rutting				
Shoving				
Distortion	\checkmark			
Bleeding				
Potholes				
Ravelling				
Block cracking	\checkmark			
Bumps and sags				
Corrugation	\checkmark			
Depression				
Lane/ shoulder drop-off				
Patching deterioration				
Polished aggregate ^{*2}	\checkmark			
Slippage cracking				

 $*^{1}N$ – Not detected, L – Low severity, M – Medium severity, H – High severity 2 Severity level not explicitly defined in Table A2. It was rated by the impression of the inspector.

For laying the services under the pavement, numerous places of the flexible pavement had been cut and patched. This directly affected the durability and ride quality of the pavement. For the uneven surface level and inhomogeneity of the patching with the existing pavement, stress tended to concentrate at the joint, and this caused the patching area to deteriorate rapidly. Maintenance would be required from time to time.

In general, both the rigid and flexible pavements were in good condition. The distresses were localized, not critical and can be repaired easily. No defect was found on the main structural elements of the systems.

The two suspended slab systems performed well in controlling the differential settlement of pavement, which had prevented the distresses associated with it.

This was also partially attributed to the application of the pavement, which was light-medium duty without significant traffic loads, as follows:

- a. The pavements provided access to commercial areas, mainly serving light-medium duty vehicles (Class 1 to 6, < 11,793 kg or 26,000 pounds),
- b. Based on the habit of local road users, and due to numerous junctions along a short stretch of road, the vehicle speed barely exceeded 60 km/hr,
- c. The road gradient was rather flat (< 1:10)

Comparison of Suspended Road System

Table 4 compares the designs of the two suspended road systems. In general, the conventional RC suspended slab system was used at Medan Mall. The slab itself was the rigid pavement. Meanwhile, Jalan Chew Sik Hiong was a suspended flat slab system without beams. The flexible pavement was constructed on the flat slab.

According to Ting (2016) [11], the construction cost of the SS system at Medan Mall was estimated 53.6% to 67.2% cheaper than the SFS system at Jalan Chew Sik Hiong. This could be attributed to the following reasons:

- a. The flat slab was by nature more expensive than the conventional RC slab due to shorter allowable spans, thicker slabs and more pilling points.
- b. The flexible pavement and its embankment increased the permanent loads acting on the suspended system.

In terms of strength and durability, the flexible pavement made of asphalt mix had lower strength, easier to deteriorate and had a shorter life span than the rigid pavement made of reinforced concrete. The flexible pavement required regular maintenance, but the repairing works were cheaper, easier and faster than rigid pavement. The maintenance works done on the pavement inevitably interrupted the traffic flow.

For the smooth surface, the flexible pavement gave a superior ride quality over the rigid pavement. However, this was not critical for a road servicing commercial areas with a dense population of pedestrians and the general vehicle speed barely exceeded 60 km/hr.

On the economic aspect, the SS system at Medan Mall incurred lower costs of construction and maintenance in long term than the SFS system at Jalan Chew Sik Hiong.

Suspended	Road System	on Peat: A	Case Stud	v in Sibu,	Malaysia

0 1 1	Table 4: Comparison of the susp	
Suspended	Suspended slab rigid pavement (SS)	Suspended flat slab with flexible pavement
road system		(SFS)
Design considerations	 Bending and shear resistances of the slabs and beams. Serviceability of the slab, beam, stump and pile caps, e.g. maximum and minimum reinforcement area, deflections, concrete cover, bar spacing, bar size, etc. Bending, shear and punching shear resistances of pile caps Pile capacity 	 Bending, shear and punching resistances of flat slab Serviceability of flat slab Pile capacity
Advantages	 Long spans of beam and slab may be used, where piles may be spaced further. High durability of rigid pavement, less maintenance required Settlement and differential settlement of road can be eliminated Maintenance works on utilities and services would not interrupt the traffic flow 	 Fewer formworks and steelworks were required. The flexible pavement gave smooth riding. Settlement and differential settlement of road can be eliminated
Disadvantages	 Habitat for pests underneath the suspended system More formworks and steelworks required Longer construction duration for the superstructure Poor ride quality due to rigid road surface 	 A thicker flat slab or the smaller spacing of piles was required Longer construction duration for substructure Underground services cause numerous areas to be patched. Poor resistance of road surface to abrasion Maintenance of flexible pavement is required more frequently Maintenance works on utilities and services interrupts the traffic flow

Table 1.	Comparison	of the suspended road systems
1 auto 4.	Comparison	

CONCLUSION

In this study, two types of suspended road systems available in Sibu were studied, which were suspended slab rigid pavement system at Medan Mall and suspended flat slab system with the flexible pavement at Jalan Chew Sik Hiong. The purpose was to acquire the characteristics of the systems as a reference to the industrial practitioners in selecting a suitable road construction system for the development on peats.

The two systems were evaluated in terms of the structural responses of the systems and the physical distress of the pavement. Both systems performed well on peat and were effective to prevent excessive settlement and eliminate the differential settlement of the pavement, which subsequently prevented various kinds of distress associated with it and increased the durability of the pavement.

The suspended slab rigid pavement system was found cheaper and more durable than the suspended flat

slab system with the flexible pavement. Considering solely the cost incurred in long term, it would be a better option than the suspended flat slab system. However, there may be some concerns about the habitat of pests and wildlife underneath the suspended slab, which may bring harm to the neighbouring communities. With that, the industrial practitioners shall adopt it wisely.

REFERENCES

- [1] Construction Research Institute of Malaysia (CREAM), 2015. Guidelines for construction on peat and organic soils in Malaysia, CIDB Malaysia.
- [2] Huat, B.B.K., S. Kazemian, A. Prasad and M. Barghchi, 2011. State of an art review of peat: General perspective, *International Journal of the Physical Sciences*, 6(8): 1988-1996.
- [3] Ling, J.H., S. Mohd, S.A. Ahmad Tajudin, S.N. Ali Mohamad, I. Bakar, M.I. Mohd Masirin, A. Zainorabidin and A.A.W. Mahmood, 2016.

Construction of infrastructure on peat: case studies and lessons learned, Matec Web of Conferences, 47, 03014: 1-6.

- [4] Mahmod, A.A.W., S. Mohd, M.I. Mohd Masirin, S. A. Ahmad Tajudin, I. Bakar, A. Zainorabidin, A. Zulwali Kifli and J.H. Ling, 2016. Construction of buildings on peat: case studies and lessons learned, Matec Web of Conference, 47, 03013: 1-5.
- [5] Kalantari B., 2013. Civil engineering significant of peat, Global Journal of Researches in Engineering 13(2).
- [6] Salimin, M.I., S. Gandaseca, O.H. Ahmed and N.M. Ab. Majid, 2010. Comparison of selected chemical properties of peat swamp soil before and after harvesting, American timber Journal of Environmental Sciences, 6(2): 164-167.
- [7] Tang, V.C.K., 2016. Peat and organic soils challenges in road construction in Sarawak: JKR Sarawak experience. Proceeding of the 15th International Peat Congress 2016, Kuching, Malaysia, pp: 613 – 618.

- [8] Zainorabidin, A., D.C. Wijeyesekera, 2007. Geotechnical challenges with Malaysian peat. Proceeding of the Advances in Computing and Technology Conference (AC&T), 2nd Annual Conference, Docklands, London, 2007.
- [9] Kolay, P.K., H.Y. Sii, S.N.L. Taib, 2011. Tropical peat soil stabilization using class F pond ash from coal fired power plant, International Scholarly and Scientific Research & Innovation. 5(2): 71-75.
- [10] Types of construction, https://www.roadex.org/elearning/lessons/roads-on-peat/types-ofconstruction/#:~:text=The%20'progressive%20disp lacement'%2C%20or,the%20type%20of%20peat% 20below, accessed on 20 Jan 2020.
- [11] Ting H.H., 2016. Comparison of suspended road system in sibu town (case study), Final year project report. School of Engineering and Technology. University College of Technology Sarawak.
- [12] Sa'don, N.M., A.R. Abdul Karim, W.Jaol, W.H. Wan Lili, 2015. Sarawak peat characteristics and heat treatment, UNIMAS e-Journal of Civil Engineering 5(3); 6-1.

	Table A1: Di	istresses in rigid pavement	nt [11]			
Distress	Description		Se	verity		
		Low (L)	Med	ium (M)	Higl	h (H)
Blowup/ Buckling	Occurs in hot weather, usually at a transverse crack or joint that is insufficient for the expansion of the slab.			Poor ride	e quality	
Corner break	Crack that intersects the joints at a distance $\leq 1/2$ slab length on both sides measured from the corner of the slab, which is due to load repetition and loss of support and curling stresses.	 Crack width < 1/8 inches (3.18 mm) that show no evidence of faulting Loss of aggregate interlock or the intrusion of debris. 	inches mm) tha or no	width $1/8 - 1/4$ (3.18 - 6.35 at exhibit little faulting or e of intrusion s.	(6.35 show aggregatObvious	
Divided slab	The slab is divided by cracks	Severity of	Number of	of pieces in cra	cked slab	
	into four or more pieces due to	majority of cracks	4 - 5	6 - 8	> 8	
	overloading and inadequate	Mild	Low	Low	Medium	
	support.	Moderate	Low	Medium	High	
		Severe	Medium	High	High	
Faulting	Differential displacement of abutting slabs at joint or crack creating a "step" deformation in the pavement surface.	• Difference in elevation 3 – 10 mm	• Difference in elevation range 1 – 20 mm		Differen elevation	ce in $n \ge 20$ mm.
Joint seal damage	The condition that enables soil or rocks to accumulate in the joints or allow significant water infiltration.	• Joint sealant performing well with minor damage, or	• Joint s place, access through	ealer is in but water is possible visible	poor cor	alant is in adition with nore severe

APPENDICES

Table A1. Distrasses	in	rigid	novomont	F 1 1 1	1
Table A1: Distresses	ш	ngia	pavement		

Suspended	Road System	on Peat: A C	Case Study in	Sibu, Malaysia
Suspended	Roud System	0111 001111 0	cuse since in	Stow, manysta

		• Some se debonded with joint edge.	n the wide; • Pumpin	gs < 3 mm ng debris at the joint.	missing	of sealant is
Lane/ shoulder drop-off	Settlement or erosion of the pavement edge and shoulder.	• 23 – 50 mm	• 50 - 10		• > 100 n	nm.
Patching/ patching deterioration	An area of pavement replaced with new materials for repairing the existing pavement or for installation of underground utilities.	 The patch functioning with little or deterioration. No faulting. 	can be the edg • Patch	ate spalling e seen around	• The ex deterior warrant	tent of the ration s
Polished aggregate	Smoothened pavement surface with low friction due to wear- outs by repeated traffic applications.	Severity level not defined. Severity level not defined.				
Popouts	Small pieces of pavement that break loose from the surface, normally in the range of 25 – 100 mm diameter and 13 – 50 mm depth					
Punchout	A localized area of the slab is	Severity of		of pieces in cra	acked slab	
	broken into pieces, which is	majority of crac		4 - 5	> 5	
	caused by heavy repeated	Mild	Low	Low	Medium	
	loads, inadequate slab	Moderate	Low	Medium	High	
	thickness and loss of foundation support.	Severe	Medium	High	High	
Scaling, map cracking, and crazing	A network of shallow or hairline cracks that develops on the upper surface or finishing of the concrete, which may lead to surface scaling (i.e. breaking down of the concrete surface of approximately $6 - 13$ mm).	Hairline on exists on surface, which good condition minor scaling.		slab area is	• \geq 15% scaled	slab area is
Shrinkage	Hairline cracks of $< 2 \text{ m long}$	Severity level no	t defined.			
cracks	formed during the setting and curing of concrete.					
Spalling	Breakdown of the slab within	Depth of		ensions of side		
corner	0.5 m of the corner.	spall	130 x 130 mm t			300 mm
		< 25 mm		OW		DW
		25 - 50 mm		OW		lium
Spalling joint	Breakdown of the slab at the	> 50 mm	Med	lium Width of		igh
spannig joint	edges.	Spall pieces		spall	< 0.5 m	> 0.5 m
		Tight: cannot be	e removed	< 100 mm	Low	Low
		easily		> 100 mm	Low	Low
		Loose: can be re	emoved and	< 100 mm	Low	Medium
		some pieces are		> 100 mm	Low	Medium
		most or all piece				
		spall is shallow.	, < 25 mm			
			or all pieces	< 100 mm > 100 mm	Low Medium	Medium High

Transverse cracking	Cracks predominantly perpendicular to the pavement.	 Crack widths < 3 mm, no spalling and no measurable faulting; or Well-sealed, crack with negligible width. 	mm, or	• Crack width or faulting ≥ 6 mm
Longitudinal Cracking	Cracks predominantly parallel to the pavement.	 Crack widths < 3 mm, no spalling and no measurable faulting; or Well-sealed, crack with negligible width. 	 Crack width 3 – 6 mm, or faulting up to 6 mm. 	• Crack width or faulting ≥6mm
Surface Deterioration	Exposure of aggregate and disintegration of wearing surface.		• 1/4 – 1/2 inches deep.	• > 1/2 inches deep.
Shattered Slab	Longitudinal and transverse cracks that divide the slab into four pieces		 The slab is broken into pieces with some interlock remaining, Crack width < 1/4 inches. 	 The slab is broken into pieces that are acting independently, Crack width > 1/4 inches.

Suspended Road System on Peat: A Case Study in Sibu, Malaysia

Table A2: Distresses in flexible pavement [11]

Distress	Description	Severity				
	Ĩ	Low (L)	Medium (M)	High (H)		
Longitudinal Cracking	Cracks predominantly parallel to the pavement near the wheel path.	 Nonfilled crack width < 5 mm, or Filled crack of any width 	 Crack surrounded by light random cracks Nonfilled crack width 5 - 20 mm, or Filled crack of any width 	 Severe spalling Unsealed crack width ≥ 20 mm 		
Pavement Edge Cracking	Longitudinal cracks within 0.5 m of the fog line. It may be in crescent shape intersecting the pavement edge	 Single crack with no spalling Unsealed crack width < 5 mm 	 Single or multiple cracks with moderate spalling Unsealed crack width 5 - 20 mm. 	 Single or multiple cracks with severe spalling, or Unsealed crack width > 20 mm Alligator cracks 		
Transverse Cracking	Cracks predominantly perpendicular to the pavement.	 Unsealed crack width < 5mm, or Sealed crack in good condition with negligible width. 	• Crack width 5 – 20 mm adjacent with random cracks of low severity.	 Crack width > 20 mm, or Crack width ≤ 20 mm adjacent with moderate to high severity random cracks 		
Alligator Cracking	Cracks form a network of multi-sided blocks that look like the skin of an alligator. The cracks develop into many- sided, sharp-angled pieces, usually less than 0.3 m on the longest side.	 An area of cracks without or with only a few connecting cracks Cracks are not spalled or sealed Pumping is not distinct. 	 Interconnected cracks forming a complete block pattern Slight spalling No pumping 	 Interconnected cracks forming a complete block pattern Moderate to severe spalling Pieces may move Pumping may exist. 		

Suspended Road System on Peat: A Case Study in Sibu, Malaysia

Rutting	Longitudinal depressions occur in the wheel paths due to repeated loadings, combined with lateral movement of the pavement materials.	• Rut depth < 10 mm. • Rut depth 10 - 20 mm.		• Rut depth > 20 mm.		
Shoving	Localized longitudinal displacement of pavement surface caused by braking or accelerating vehicles.	• Decent ride quality • Fair ride quality.		• Poor ride quality		
Distortion	Any deviation of the pavement surface from its original shape other than shoving and rutting, which is generally due to densification, consolidation, swelling, creep or slipping of the surface or foundation.	 Slight waves, sags, humps, corrugations or wash boarding of the pavement Noticeable swaying motion, good car control. 		• Fair to poor car control and the vehicles have to slow down from normal speed.		
Bleeding	Excess bituminous binder on the pavement surface, which creates a shiny, glass-like, reflective surface that may be tacky to the touch.	 Slight degree noticeable durin few days of year. Does not stick shoes or vehicle 	appearance with free, excess asphalt and stick to the shoes or vehicles only a few		• Gives pavement surface a wet look and stick to the shoes and vehicles at least several weeks of the year.	
Potholes	Bowl-shaped holes of various	Maximum		Average diameter (
	sizes in the pavement surface.	depth	10	00 - 200	200 - 450	450 - 750
			_	mm	mm	mm
		13 – 25 mm		Low	Mild	Medium
		25 – 50 mm		Low	Medium	High
		> 50 mm		/ledium	High	High
Ravelling	Progressive loss of pavement materials like aggregate and bituminous binder, which results in a rough surface that is vulnerable to weather deterioration.			has worn face texture is ad pitted articles exist	 Aggregate and/or binder has worn away, The road surface is very rough and pitted < 13 mm deep for an area of > 1 ft² 	
Block cracking	Interconnected cracks that divide the pavement into approximately rectangular pieces caused by shrinkage of asphalt pavement and daily temperature cycling.	 Crack width ≤ 6 mm, or Sealed cracks in good condition with negligible width. Crack width 6 - 19 mm with random cracks 		 Cracks width > 19 mm, or Crack width ≤19mm with moderate to severe random cracks. 		
Bumps and sags	Localized upward displacements of the pavement surface caused by infiltration and build-up of material in a crack in combination with traffic load.	• Decent ride quality. • Fair rid		• Fair ride	e quality	• Poor ride quality.
Corrugation	A series of closely spaced ridges and valleys occurring at fairly regular intervals perpendicular to the traffic	Decent ride quality Fair ride quality.		• Poor ride quality.		
		14				

Suspended Road System on Peat: A Case Study in Sibu, Malaysia

Depression	direction, which is usually caused by traffic action combined with an unstable pavement surface or base Localized settlement of pavement due to improper construction.	• 13 – 25 mm deep	• 25 - 50 mm deep	• ≥ 50 mm deep
Lane/ shoulder drop-off	Settlement or erosion of the pavement edge and shoulder.	• 25 - 50mm	• 50 – 100 mm	● ≥100mm
Patching/ patching deterioration	An area of pavement replaced with new materials for repairing the existing pavement or for installation of underground utilities.	 Low severity distress Rutting < 6 mm pumping not evident decent riding quality 	 Moderate severity distress Rutting 6 - 12mm 	 Patch badly deteriorated, Poor ride quality Rutting > 12 mm.
Polished aggregate	Smoothen pavement surface with low friction due to wear- outs by repeated traffic applications.	Severity level not defin	ed	
Slippage cracking	Crescent-shaped cracks transverse to the direction of travel, which are produced when braking or turning wheels that cause the pavement surface to slide or deform.	• Crack width < 10 mm	 Crack width 10 – 40 mm Moderately spalled Surrounded by secondary cracks 	 Crack width ≥ 40 mm the area around the crack is broken into easily removed pieces