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INTRODUCTION 

Over 80% of global energy needs are primarily provided by fossil sources including coal, petroleum, and 

natural gas indicates their essential part in development and heavy dependency on non-renewable sources 

[1]. Essentially the depleting fossil fuel reserves and increased utilization in industrial and transport 

sectors emitting greenhouse gases (GHG), causing climate change, global warming, air pollution, health 

problems [2]. In addition, Organization of the Petroleum Exporting Countries (OPEC) statistical reports 

projected world’s demand for diesel and gas fuels in 2040 as 1834 billion liters which is about 10% more 

compared to 2017 usages [3; 4]. These critical developments directly pose significant challenges to the 

environment, ecological imbalance, and humanity. Owing to the energy crisis, the researchers, and 

policymakers’ interests moved contributions towards clean and renewable alternative fuels such as 

biodiesel. With the growing trends by 2030 renewable fuel generated energy is expected to have a share of 

23%. Compared to 2021, in 2022 it is expected that globally biofuel demand is anticipated as 6% or 9 100 

million liters [5].  

Biodiesel has been received as a sustainable choice due to advantageous physicochemical fuel 

properties and lower exhaust gas emissions, except nitrogen oxides. Although biodiesel has many 

benefits, the fuel suffers from stumbling limitations such as lower calorific values, higher viscosity, pour 

and cloud points, corrosion for large scale commercialization [6]. Biodiesel can be used in diesel-powered 

engines without significant changes [7]. Nevertheless, production and use of biodiesel and petro diesel 

blends are growing in both developed and developing countries including the USA, Germany, France, 

Malaysia, India, Brazil, Argentina, and Indonesia [5].  

In addition to numerous experimental explorations, mathematical or statistical modeling techniques 

are widely used in biodiesel production and quality metric optimization. Traditional statistical data 
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models are widely used in biodiesel production optimization research. Nonetheless, these approaches are 

constrained to capture intricate non-linear correlations of the biodiesel production as well as inadequate 

databases. Also, the predictive capabilities of these models are constrained in processing large datasets. 

Hence, it is essential to develop efficient, robust, and accurate mathematical modelling procedures for 

analyzing the correlations among various operating parameters and to optimize the desired outputs [8]. 

Further, a robust system estimation minimizes experiments within the set boundary conditions. In recent 

years there has been an efficient use of data-driven machine learning (ML) models in biodiesel production 

[9-11]. This short review paper presents basics of biodiesel production parametric studies, followed by 

state of use of machine learning algorithms in biodiesel research. Lastly concludes with applications of 

supervised machine learning (SML) algorithms, emphasizing on future perspective for adapting to the 

field of biodiesel production research. 

BIODIESEL FEEDSTOCK, PRODUCTION, AND QUALITY METRICS 

Mathematically biodiesel production optimization is a multi-objective optimization problem (MOOP) [12; 

13]. The objective functions concerned are complex and mutually depend on the competing constraints 

and parameters. The general form of MOOP is presented in Eq.1.  

  (1) 

Subject to   
   
 

 

 

 

   

 

Figure 1. Classification of feedstock, techniques, reactors, and process intensification processes in biodiesel 

production [14; 15].  

Classification and biodiesel production process influencing parameters are briefly presented in Figure 

1. A wide range of promising feedstocks including edible non-edible vegetable oils, animal fat oils, waste 
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oils and microalgae can be used for producing biodiesels. The feedstock source characteristics such as 

geographical regions, seed genetic conditions, harvest season have significant effects on oil refining and 

purification processes [16]. However, use of edible oils has been strategically critiqued because of its 

estimated impact on oil prices. The feedstocks contain long-chain fatty acids that remarkably influence 

biodiesel process kinetics. Biodiesel is produced by esterification of free fatty acids (FFAs) or 

transesterification of triglycerides (TG) in the presence of a catalyst.  

Researchers explored non-catalyst pathways of biodiesel production  such as supercritical conditions 

[6]. Besides, biodiesel production involves a critical chemical procedure controlled by many parameters 

involving feedstock physicochemical properties, (trans)esterification process, alcohol type and quantity, 

catalyst type and concentration, reaction time, reaction and ambient temperatures,  reactor geometry [17]. 

Consequent to the complexities in the biodiesel production mechanism substantially undertook 

sophisticated design and modeling methodologies. Numerical modeling of (trans)esterification reaction 

kinetics considering heat and mass transfer boundary conditions and subsequent simulations enhances 

biodiesel production processes [18]. Optimization of controlling and operating conditions results in 

produced biodiesel quality and quantity along with minimizing production cost, time, and flexibility in 

feedstock resources [8].  

 
 

Figure 2. Importance of employing modeling techniques for predicting biodiesel fuel properties [19]. 

 
The biodiesel fuel properties determine its suitability for commercial application. European Norms 

(EN) and American Society for Testing and Materials (ASTM) standards determine fuel compliance. The 

important physicochemical property of a fuel includes density, viscosity, cetane number (CN), pour point 

(PP), cold point (CP), flash point (FP), cold filter plugging point (CFPP), oxidation stability (OS), iodine 

value (IV), acid value (AV) [16]. Many of these properties are potentially influenced by biodiesel feedstock, 

production process, storage, and transportation. Calibration, evaluation and optimization of the reaction 

kinetics of biodiesel production and its physicochemical properties require a comprehensive experimental 

data-driven analysis [19]. Importance of employing modeling techniques for predicting biodiesel fuel 

properties briefly resented in Figure 2. Statistical and mathematical models such as response surface 

methodologies are widely reported in optimizing including optimizing biodiesel production with limited 

datasets.  
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MACHINE LEARNING TECHNOLOGIES IN BIODIESEL PRODUCTION RESEARCH  

Machine learning model analytics in biodiesel production research can be applied considering numerous 

process domains including feedstock classification and supply chain, catalyst, production mode, 

controlling and operating parameters, and physicochemical fuel properties. Figure 3 shows recent data of 

research publications and citation details that employed ML models in biodiesel production. 

 
Figure 3. Number of research publications that dealt with employing machine learning in  

biodiesel production research. 

 

The ML programs are proven as a predictive analytics approach, that uses computational methods 

structured on algorithms for learning from input data sets and training to generate desired responses as 

output. The input parameters for a typical biodiesel production include catalyst concentration, methanol 

to oil ratio, reaction temperature, reaction time and agitation speed [20; 21]. While the output responses 

include biodiesel yield and fuel quality. Implementation of ML model workflow is presented in Figure 4. 

The Major steps include dataset collection, data curation, ML model training, Predicting the responses, 

evaluation, and testing of the ML model. Selection and adoption of a ML model broadly evolves on both 

the responses and tradeoffs of data sets and their complexity.  

 
Figure 4: Machine learning model workflow for biodiesel data processing. 

The comprehensive efforts made to review on ML models employed in biodiesel research reveals their 

potential applications in classification of biodiesel feedstock, biodiesel production, fuel property analysis, 

and biodiesel fueled diesel engine analytics [15; 20; 21; 22]. Among all ML models, supervised learning 

algorithms are being potentially devoted in various biodiesel production applications and there is a much 

scope for development. 
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SUPERVISED MACHINE LEARNING MODELS IN BIODIESEL PRODUCTION RESEARCH. 

 

Figure 5. Broad categorization of supervised machine learning models. 

A wide range of tailormade ML models are employed for multiple discoveries and optimization. 

Classification of ML algorithms shown in Figure 5. Broadly supervised learning, unsupervised learning, 

and reinforced learning. Supervised machine learning (SML) is a subcategory of ML, where a model is 

trained on a labeled dataset to yield the required output. While the results of these predictive analysis are 

used to build applications such as feedstock studies, fuel quality prediction, yield estimation, production 

optimization, and process parameters. In biodiesel research, for classification and regression analysis ML 

models are widely used. The built SML model’s performance is being continuously evaluated to achieve 

desirable accuracy. Evaluation metrics that uses for cross validation of SML models include RMSE,  and 

MAPE Eq. (2-4). However, based on ML models, other metrics such as F1 score, kolomogorov Smirnov 

chart, Gini coefficient, confusion matrix and log loss are also used [23-25]. 

 

 

Where: N is the total number of observations. 

(2) 

 

(3) 

 

 

(4) 
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Table 1 describes biodiesel yield optimization employing various SML models considering input 

parameters including catalyst quantity (CQ), agitation speed (AS), methanol to oil ratio (MOR), reaction 

temperature, reaction time and agitation speed. Jin et al., employed three ML models kNN, SVM and RF 

to predict biodiesel production considering input features such as biodiesel feedstock type, catalyst, 

reaction temperature, and reaction time  with a total of 381 experimental data collected from 13 cases 

[26]. Bukkarapu et al., [27] applied ANN and SVM based Multilinear regression models to predict 

biodiesel properties. Gradient boosting ML model combined with Genetic algorithm (GA) were utilized to 

predict and optimize biodiesel production yield from waste cooking oil feedstock [28]. AdaBoost 

regression ML models were utilized to predict fuel properties including flash point, oxidation stability, 

density, and viscosity for biodiesel fuel application public vehicles considering various reaction operating 

parameters including agitation speed, fuel blend composition, reaction duration and temperature [29].  

Hoang et al. conducted experimental analysis of pyrolysis oil and biodiesel oil blends for an application of 

natural gas enriched homogeneous charge compression-ignition engine [30]. Data modeling and analysis 

was carried out employing RF and SVR ML models.  A combination of Gradient boosting ML, RSM and 

GA were effectively employed for predicting WCO biodiesel yield and fuel characteristics and their 

applications in CI engines [31]. DNN, LR, PR and kNN ML algorithm models are adopted to prediction 

and analysis of Jatropha biodiesel production via transesterification process [32]. Silitonga et al. studied 

microwave assisted Ceiba pentandra oil biodiesel synthesis employing extreme ML algorithm models and 

RSM for optimizing process conditions considering methanol/ oil ratio, catalyst concentration, reaction 

time and stirring speed [33]. Long et al. applied ML model techniques on semi-continuous algal 

cultivation for biodiesel production [34]. Therefor the research works concluded that employing SML 

model predictions gives accurate results.  
 

Table 1. Supervised machine learning models applied for biodiesel production research. 
 

Feedstock(s) Model input parameters Dataset 
size 

ML Model Reference 

CQ MOR Temp Time AS 
Castor oil     

 
156 ANN [35] 

Castor oil      156 Least square 
SVM 

[36] 

Castor oil     
 

156 SVM, GA [37] 

Degummed waste 
cooking oil 

  
 

  27 ANN and RSM [38] 

Esterified soybean oil   
 

 
 

17 LR and ANN [39] 

Esterified Ceiba 
pentandra oil 

     46 kernel- ELM 
and ANN  

[40] 

Jatropha-algae oil 
blend 

    
 

29 ANN [41] 

Polanga oil      26 ANN, GA [42] 

Sunflower oil     
 

456 ANN and RSM [43] 

waste cooking oil      29 ELM SVM and 
RSM 

[44] 

waste cooking oil#      56 SVM [45] 

Waste olive oil     
 

45 ANN [46] 
#water content and impurity also considered for modeling 

FUTURE PERSPECTIVES AND RECOMMENDATIONS 

Biodiesel fuel production and physicochemical properties assessment relies on higher accuracy and 

predictability of a model. As discussed previously, biodiesel production is a complex process. There are 

numerous factors influencing the fuel yield and its characteristics. The traditional and other linear 

mathematical models are constrained with dataset processing approaches. Hence, there is a need for 

developing reliable and sophisticated models that accommodate non-linear relationships between 
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empirical research results and production operating parameters. Owing to their simplicity the SML 

models are preferred to overcome the poor predictability of traditional linear models. Developing generic 

ML integrated models for datasets from laboratory experiments, industry and synthetic sources would 

enhance the model accuracy driven analytics. The analytics will help to breakthrough many limitations in 

this domain as well as commercialize the research. 

CONCLUSION 

Several supervised machine learning models are presented in literature to improve biodiesel production 

research specific to fuel quality and transesterification process are discussed. Major factors are given to 

standardize and perspectives for formulations based on multi objective optimization nature of biodiesel 

research. Credibility of data-driven models depends on size of the dataset as well as statistical validation 

approaches. The most important methodology for enhanced efficiency of predicted models in biodiesel 

research could be evolved from industrial scale research. Among reported literature limited efforts are 

devoted to building integrated models for biodiesel experimental research and industrial process results. 

Supervised machine learning powered empirical biodiesel processes will surely contribute to establish the 

most effective, inexpensive, and sustainable biodiesel supply chain as compared to the present. 
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