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Abstract

Malaysian students often struggle with the abstract and complex concepts of calculus,
primarily due to a weak foundational understanding of functions, which is a fundamental
element in learning calculus. Traditional teaching methods in Malaysia further make
worse this issue by emphasizing computational procedures over conceptual
understanding. Addressing these challenges, this study aims to design and refine a
Differential Calculus Instructional Lesson to enhance students' understanding. Using a
design-based research methodology, the study followed three phases: preparation and
design, teaching experiment, and retrospective analysis with intervention refinement. In
the first phase, a diagnostic test identified students’ specific difficulties related to graphs
and graphing in differential calculus. A teaching experiment was then conducted in a
pre-university class, where data were gathered through classroom observations, students’
work on the Desmos platform, and interviews with a teaching witness. Analysis revealed
that the instructional lesson effectively provided visual aids that aided learning, but most
students only attained a basic, Action-level understanding of graphs and graphing. The
retrospective analysis highlighted key areas for improvement. The lesson’s extensive
content within a two-hour session limited deep learning. To address this, two
refinements were introduced, which are introducing a draft box feature for students to
comfortably draft their answers and a narrowed focus on linear and quadratic graphs and
their derivatives. These adjustments aimed to align the lesson with students' cognitive
load and time constraints. This study contributes valuable insights into the application
of design-based research for developing effective educational interventions. The
refinement phase demonstrated the need to align instructional content with students’
learning capacities. Findings offer practical guidance for educators and instructional
designers on integrating theoretical frameworks into design-based research cycle and
teaching strategies, ultimately address learning gaps and promote conceptual
understanding in differential calculus.

Keywords: Action-Process-Object-Schemas (APOS) Theory, Design-Based Research,
Differential Calculus, Hypothetical Learning Trajectories, Merrill’s First Principle of
Instruction

Introduction

Differentiation topic is one of the fundamental branches of calculus, which is an essential
subject in the fields of Science, Technology, Engineering, and Mathematics (STEM).
Differentiation primarily deals with rates of change, slopes of functions, graphing, and
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its application in real-world contexts, making it a crucial component in mathematical
modelling (Saad, Abu Mansor, Azudin, & Mohd Hamdi, 2024). In Malaysia, calculus
concepts have been introduced since secondary school as part of the additional
mathematics syllabus (Awang Salleh & Zakaria, 2012; Awang & Zakaria, 2013).
According to Parrot and Leong (2018), Malaysian students often struggle to understand
the abstract and complex ideas inherent in calculus, leading to frustration and a lack of
understanding. One major contributing factor is their weak foundation in understanding
functions, which is a fundamental concept in calculus (Drlik, 2015).

Traditional calculus classes often emphasize computational procedures without
placing enough importance on conceptual understanding. These traditional teaching
strategies tend to present a "list of procedures to follow," leading students to just practice
the routine algebraic manipulations without truly understanding the underlying concepts.
According to Mendezabal and Tindowen (2018), the traditional approach prevents
students from effectively applying calculus concepts, as it emphasizes algebraic
techniques rather than adopting a balanced approach that includes graphical, numerical,
and analytical methods. In the current teaching and learning environment for calculus,
there is a challenge in achieving a balance between conceptual understanding and
procedural fluency. This imbalance can limit students’ understanding of calculus
concepts and their ability to apply them to real-world problem situations (Awang Salleh
& Zakaria, 2012).

According to Harris (1996), our current education system focuses too much on
giving students extensive practice with exercises and assuming that repeated practice
leads to mastery of the topic. While this approach may improve procedural skills, it
prevents students from achieving a deeper level of mathematical understanding. As a
result, students may find it challenging to apply the concepts they have learned to real-
world problems due to a lack of conceptual depth. Therefore, an integrated approach is
needed to enhance both conceptual understanding and procedural fluency which will
improve students’ mathematical competency.

Visualisation is one of the key elements in solving mathematical problems
especially in word problems (Ahmad et al., 2010). Ahmad Tarmizi et al. (2010) and
Makgakga and Makwakwa (2016) found that students often struggle with understanding
the concepts of limits, derivatives, and integrals, which are fundamental to calculus.
These difficulties arise because students are unable to visualise the mathematical
concepts, especially those related to function transformations which are the essential
aspects of calculus (Fitriani, Pasaribu, Novitasari, Samosir, & Yusmiati, 2023).
Makgakga and Makwakwa (2016) stated that students' struggles with mastering calculus
concepts lead to poor learning outcomes and difficulties in problem-solving. Therefore,
incorporating technology into the teaching and learning of calculus is crucial as it can
help students visualise these concepts. Numerous studies have explored the use of
technology in teaching mathematics, including the use of graphic calculators (Chien,
2019; Parrot & Leong, 2018), GeoGebra (Listiana, Aklimawati, Wulandari, & Isfayani,
2022; Sari, Hadiyan, & Antari, 2018), and Geometer’s Sketchpad (Ganesan & Leong,
2020; Kotu & Weldeyesus, 2022).

When incorporating technology into the calculus learning process, it should not be
assumed that learning will automatically improve (Vajravelu & Muhs, 2016) and only
look for the improvement on the students’ result. Instead, there should be a focus on the
correct and appropriate implementation of technology tools and a better understanding
of how students construct their understanding when exposed to newly designed
instructional lessons. Innovation occurs when it suits students' needs, and the technology
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is implemented thoughtfully in the curriculum. Current implementations of technology
or instructional design often perform well in organizing and delivering courses.
However, there is a lack of attention to the implementation process and students’
learning experiences, particularly their knowledge construction in these learning
environments (Badali, Hatami, Farrokhnia, & Noroozi, 2020; Cai & Moallem, 2022),
and students’ active engagements and interactions (Y1lmaz, Unal, & Cakir, 2017).

Therefore, this study is conducted to design an instructional lesson namely
Differential Calculus Instructional Lesson (DCIL) which is incorporating with the use
of Desmos. The teaching and learning process of differential calculus, including
instructional notes and group activities, fully utilised Desmos. Students’ understanding
is explored using APOS theory when instructors use this newly designed instructional
lesson.

This study integrates APOS Theory, Hypothetical Learning Trajectories (HLT),
and Merrill’s First Principles of Instruction to provide a comprehensive framework for
designing instructional lesson aided with Desmos and also for the exploration of students’
understanding of differential calculus. APOS Theory is essential for analysing students’
cognitive processes involved in concept formation, ensuring that students’ progress from
action-based understanding to higher-order thinking (Borji, Alamolhodaei et al., 2018).
HLT provides a structured learning pathway, allowing for systematic instructional
design that aligns with students' cognitive development (Simon, 2014). Merrill’s First
Principles further enhance the framework by emphasizing active learning through the
activation of prior knowledge and guided application, ensuring that students not only
develop conceptual understanding but also apply their knowledge effectively (Truong,
Elen, & Clarebout, 2019).

The need for this integrated approach stems from gaps in existing research, where
instructional methods often focus on either cognitive development or instructional
strategies in isolation. Magsood, Ceravolo, Ahmad, and Sarfraz (2023) highlighted that
traditional methods frequently fail to fully leverage learning trajectories in instructional
design, opting instead for data mining and visualization techniques to analyse students’
course trajectories. Additionally, traditional approaches often lack a structured
mechanism for supporting and understanding students' cognitive development, leading
to fragmented learning experiences. By integrating APOS Theory for cognitive
structuring, HLT for instructional scaffolding, and Merrill’s Principles for learner-
centered instructional design, this study provides a more systematic and effective
instructional model aimed at improving student learning outcomes in differential
calculus.

This study is guided by the following research questions:

1. How does students' mathematical understanding of graphs and graphing in differential
calculus develop based on APOS theory when they engage with a Desmos-based
instructional lesson?

2. To what extent does students’ actual learning align with the hypothetical learning
trajectory as identified through retrospective analysis?

3. What refinements can be implemented to improve the design of the Differential
Calculus Instructional Lesson (DCIL)?

Literature Review

APOS Theory in Learning Calculus
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The Action-Process-Object-Schema (APOS) theory is a constructivist framework
extensively employed to investigate students' understanding of mathematical concepts,
particularly in calculus. Founded by Dubinsky (1991), it is valued for its ability to bridge
research and teaching (Oktac, Trigueros, & Romo, 2019). According to Dubinsky (1991),
APOS theory posits that learning mathematical concepts involves constructing mental
structures: actions, processes, objects, and schemas. These structures are essential for
students to achieve a profound understanding of mathematical concepts.

In the context of calculus, APOS theory has been utilised to analyse students'
understanding of concepts such as limits, derivatives, and integrals. Researchers have
developed genetic decompositions, which describe the mental constructions necessary
for students to fully understand these concepts (Cetin, 2009; Maharaj, 2010). Studies
employing APOS theory reveal that many students struggle to progress from an action
or process conception of calculus concepts to a more robust understanding involving
objects and schemas (Borji & Martinez-Planell, 2020; Listiawati & Juniati, 2021; Nagle,
Martinez-Planell, & Moore-Russo, 2019). For instance, students may be proficient in
computing derivatives procedurally but find it challenging to interpret derivatives
graphically or conceptually (Borji, Font, et al., 2018).

Borji, Alamolhodaei et al. (2018) implemented the APOS-ACE (Action, Process,
Object, Schema - Activities, Classroom discussion, Exercises) instructional approach to
help students develop appropriate mental structures. This approach involves designing
activities, classroom discussions, and exercises to guide students through constructing
actions, processes, objects, and schemas for differential calculus concepts. The
following outlines the key aspects of each APOS level that facilitate students'
understanding of calculus:

@) Action- Initially, students understand derivatives through procedural actions,
such as calculating derivatives using formulas or rules, and they require external
guidance. This action-based understanding is crucial for developing a deeper
comprehension of derivatives, particularly in choosing the correct formulas or rules for
calculations (Maharaj, 2013).

(b) Process - As students advance, they begin to perceive derivatives as processes
and can perform derivative calculations without explicitly executing them. They start to
conceptualise the derivative process mentally (Borji, Alamolhodaei, et al., 2018).

(©) Object - Subsequently, students develop an object-based understanding of
derivatives, allowing them to visualise and interpret the derivative as a mathematical
entity. This stage involves encapsulating the process understanding into an object,
including comprehending the derivative as a slope, a rate of change, or an instantaneous
rate of change (Maharaj, 2010).

(d) Schema - Finally, students construct a schema for derivatives, a mental
framework integrating actions, processes, and objects. This schema enables students to
apply derivatives in various contexts and recognize the derivative as a fundamental
concept in calculus (Borji, Font, et al., 2018; Maharaj, 2010).

APQOS theory proves beneficial in guiding and assisting students in developing a
comprehensive understanding of calculus, transitioning from procedural actions to
deeper conceptual insights (Borji & Martinez-Planell, 2020; Listiawati & Juniati, 2021;
Nagle et al., 2019). Thus, this study employs APOS theory to explore students'
understanding of differential calculus when exposed to newly designed instructional
lessons.
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Hypothetical Learning Trajectories in Instructional Lesson Design

Hypothetical Learning Trajectory (HLT) is the theoretical model utilised by researchers,
teachers, and curriculum developers to design mathematics instruction aimed at
conceptual learning. HLTs consist of three key components: a learning goal, a set of
learning tasks, and a hypothesized learning process. This model was first proposed by
Simon (1995). HLTs are crucial for discovering and understanding how students learn
and develop their comprehension of complex concepts. They are designed to guide
students through the learning process, identifying key landmarks and potential obstacles
as they transition from a naive to a more sophisticated understanding of a concept (lvars,
Fernandez, Llinares, & Choy, 2018). The development of HLTs involves understanding
students' current knowledge, describing fundamental aspects of assimilation and fixation,
selecting appropriate tasks, and preparing teachers for possible interventions (Morales
Carballo, Damian Mojica, & Marmolejo Vega, 2022). Table 1 presents an example of
the Hypothetical Learning Trajectory used in this study.

Table 1: Example of Hypothetical Learning Trajectory and Actual Learning
Trajectory Table with APOS Genetic Decomposition

Hypothetical Learning Trajectory Actual Learning
Task Conjecture of  Evaluation for Transcript Quantitative
Formulation  how students students’ Excerpt/ impression of how
would respond  understanding based  Clarification well the conjecture and
on APQOS theory actual learning

matched (e.g., —, 0, +)

Source: Adapted from Bakker & van Eerde, 2015, p.442

Merrill’s First Principles of Instruction

Based on Merrill's (2002) first principles of instruction, instructional activities should
be centered on real-world problems or tasks, such as optimization functions or graphing
and modelling population growth. According to Merrill, the design of instructional
lessons consists of four phases. First, educators should activate students’ prior
knowledge. In this phase, educators engage learners by helping them recall and stimulate
their existing knowledge, connecting it with new information (Merrill, 2018). For
instance, they might use derivative concepts to model the motion of objects or optimise
business incomes. Second, educators should use clear examples to demonstrate new
knowledge and illustrate the desired learning outcomes (Jalilehvand, 2016).

Next, students should apply their new knowledge in authentic contexts (Choi,
2014). They integrate their knowledge into problem-solving activities, such as solving
optimisation problems using calculus by incorporating these principles, educators can
create engaging and effective instructional lessons for students in differential calculus,
thereby promoting deeper understanding and transferable knowledge.

There were few studies have explored the use of the first principles of instruction
in instructional design. For example, Badali et al. (2020) examined their application in
MOOC design to explore student learning and satisfaction. Their study found that
incorporating these principles led to improved student learning outcomes and higher
satisfaction levels. The structured approach helped students engage more effectively
with the course content. Cai and Moallem (2022) focused on redesigning an online
graduate course using a rapid prototype approach whereas Cheung and Hew (2015)
explored their application in designing a blended learning course. Gardner (2011)
investigated improving student performance in introductory biology courses. These
findings suggest that the First Principles of Instruction serve as a valuable framework
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for designing effective learning experiences that promote meaningful and lasting

learning.

Desmos as an Instructional Tool for Teaching and Learning

Desmos is a graphing calculator available as both a web-based application and mobile
platforms. It has several interactive features such as Activities Builder, Graphing
Calculator, and Classroom Activities, where educators can use to create engaging
classroom activities to attract their students in the lessons, or assessment tasks to
evaluate their students’ mathematical understanding. The use of Desmos is not limited
to mathematics or science teachers in their classroom teaching but also can be used by
language teachers to develop task-based games to engage their students in designed
learning environment that can help in improving their communication skills (Caniglia,
Borgerding, & Meadows, 2017). The activities designed aims to encourage students to
be active listeners, with those in the position to give the instruction able to deliver clear
communication.

Unlike traditional hand-held technology tools such as graphic calculator, Desmos
is more intuitive and simpler to operate (Ebert, 2015). Normally, altering graph
dimensions on graphing calculator involves numerous steps, however, it is much simpler
on Desmos, where we can just simply press the plus/minus button on the screen to zoom
in and out the graph. Such simplicity directly addresses a common issue associated with
the use of technology, which is the intrinsic complexity of the technology tools that
prevents students from efficiently using it (Hillman, 2014). This is supported by Thomas’
(2016) argument that students spent too much time on the mechanics of operating the
typical graphic calculator, which the simplicity of Desmos may alleviate the potential
stress among students using it when completing math problems. By reducing
technological frictions, it creates a classroom environment where learning is both
accessible and intellectually stimulating.

Educators are encouraged to employ a number of innovative tools to demonstrate
various forms of mathematical relationships such as in graphical, symbolic, or tabular
form. Technology can aid in the understanding of mathematical concepts if implemented
appropriately (Gertenbach & Bos, 2016). For example, Ebert (2015) employed Desmos
as a platform to assign a graphing project to his students to reinforce their comprehension
of function concepts. The study demonstrated how students’ ability to graph the general
shapes of functions, graph transformation, and graphing functions based on the restricted
domain and range significantly enhanced after completing the project task. Besides that,
Desmos is a platform for teachers to evaluate their students’ mathematical understanding
on the concepts learned (Gulati, 2016; Zheng, Naresh, & Edwards, 2020). Students can
articulate their ideas and problem-solving processes on the assigned activities board
where teachers can view them in real time. This function is useful especially for teachers
who wish to directly track their students’ progress in understanding of the lesson content.

Methodology

This study employed a design-based research (DBR) method to design an instructional
unit namely Differential Calculus Instructional Lesson (DCIL). The main aim is to
explore students’ understanding on differential calculus. DBR is chosen for this study
because it enables the iterative development, analysis and refinement of the designed
instructional lesson (Kennedy-Clark, 2013), making it particularly suitable for
educational settings where controlled experiments may not be feasible. Besides that,
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DBR bridges the gap between theory and practice by addressing real educational
challenges while simultaneously generating theoretical insights (Barab & Squire, 2004).
There are three important phases in this DBR approaches which are preparation
and design phase, teaching experiment phase, and lastly, retrospective analysis and
refinement phase. DBR emphasizes on iterative cycles of design, implementation during
teaching experiment phase, and continuous refinement of instructional interventions
based on real-world feedback and outcomes. The scope of this study was limited to the
first cycle of the design-based research process to ensure a detailed yet concise
discussion, as including multiple cycles would result in an excessively lengthy report.

Preparation and Design Phase

A diagnostic test was given to 32 students who participated in this research during the
preparation and design phase. Their scores on the diagnostic test served as an initial
benchmark of their knowledge of differential calculus. Additionally, the test analysis
result obtained helped researchers understand which calculus concepts needed emphasis
and to be included in the intervention during the design process (Gravemeijer, 1994).
The test content was validated by three mathematics experts, each having over 10 years
of teaching experience in the mathematics subject to ensure accuracy and relevance. The
analysis of the test results was then used to develop a hypothetical learning trajectory
(HLT) for the lesson. The genetic decomposition of students' mental constructions which
based on APOS theory (Dubinsky & McDonald, 2001) in relation to their understanding
of each designed activity was included into the HLT as well. The lesson was designed
in order to address the difficulty areas that identified from the test analysis, and it aimed
to provide targeted instruction to improve students' understanding of differential
calculus. Table 2 presented the students' APOS Achievement for the Diagnostic Test.

Table 2: Students' APOS Achievement for Diagnostic Test

Question Percentage of Students (%)
Action Process Object Schema Zero Marks/ No
answer given

1 25% 34.3% 18.8% 6.3% 15.6%

2 6.3% 40.6% 6.3% 21.8% 25%

3 21.9% 28.1% 28.1% 0% 21.9%

4 50% 15.6% 0% 0% 34.4%

5 40.7% 12.5% 0% 3.1% 43.7%

Source: Author’s work

The nature of Question 1 required students to apply the quotient rule to find the
derivative of a given function and identify the x-coordinates of stationary points.
Question 2 tested students' understanding of the gradients of tangent and normal lines,
as well as their interrelationship. Question 3 involved an optimisation scenario where
students had to determine the maximum volume of water that could be held in a water
tank. Question 4 tasked students with interpreting information from displayed graphs,
identifying their slopes, and subsequently sketching the graphs of their derivatives.
Question 5 instructed students to graphically represent a cubic function based on a
provided equation.

Analysis of Table 2 revealed weaknesses among students in graph interpretation
and graph-related problems, specifically with few achieving Object and Schema levels.
A significant percentage of students either scored zero marks or did not attempt
Questions 4 and 5. Consequently, the researcher opted to emphasize topics related to
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Table 3: Hypothetical Learning Trajectory with APOS Genetic Decomposition

Hypothetical Learning Trajectory (HLT)

Activity Merrill’s  First Conjecture of how the lesson Students’ understanding
Principles of be conducted evaluation based on APOS
Instruction theory
Introduction Activation The instructor helps the NA
students recall their

knowledge of the definition of
the derivative of a function.

Lesson Demonstration The instructor demonstrates Action: The students are able to
Content several graphs, including determine the position of the
linear, quadratic, and cubic point where the graph changed
graphs, on the Desmos itsslope.
platform. Process: The students are able
The instructor guides the to determine the increasing and
students in determining the decreasing intervals from the
increasing and decreasing stationary points.
intervals for the displayed Object: The students are able to
graphs. relate the increasing and
The instructor guides the decreasing behavior of the
students in relating the graph f to the positive and
positive and negative values of  negative values of the derivative
the derivative function to the graph on the corresponding
increasing and decreasing intervals.
intervals of the functions. Schema: The students are able
to  establish  relationships
between the derivative function
and the original function,
regardless of the type of
function.
Classroom Application and Students are organized into Action: Students capable of
Discussion Integration groups to engage in the identifying pairs of linear and
Matching  Graph  Cards quadratic graphs to form
activity on the Desmos original-derivative pairs.
platform. Incorrect responses may occur
Instructor  monitors  their as they recall that the derivative

strategies and progress using
the Teacher Dashboard within
the Desmos platform.

of a function is one degree
lower than the original graph.

Process:  Through  mental
repetition of differentiation
techniques, students

successfully match a horizontal
line as the derivative of a linear
graph, reflecting the constant
nature of the derivative of a
linear function.

Object:  Students  establish
connections between intervals
of increase or decrease in the
original function's graph and the
positive or negative values of its
derivative over corresponding
intervals.
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Schema: By relating graph
properties such as slope, tangent
lines, original  functions,
derivatives, and derivatives at
critical points, students
construct a comprehensive
framework  for  accurately
matching derivative functions
with their respective original
function graphs.

Take Home Application and Instructor briefs and shares the NA

Exercise Integration Desmos link with students,

enabling them to complete the
task independently at home.

Source: Authors’ work

Teaching Experiment Phase

Following the completion of the instructional lesson design and its implementation, a
teaching experiment was conducted in a real pre-university classroom setting. This
research was carried out in a private institution in Sarawak with a sample of 32 students.
For the sampling technique, a purposive sampling approach was employed. The
selection of participants was determined by the institution, focusing on a group of
science pre-university students who were the target learners for the instructional
intervention. In this experiment, the researcher assumed the role of the instructor,
diverging from traditional experimental designs where researchers typically do not serve
as instructors (Cobb, Confrey, Disessa, Lehrer, & Schauble, 2003; Molina, Castro, &
Castro, 2007). The researcher collaborated closely with a teacher familiar with the
classroom environment (Collins, Joseph, & Bielaczyc, 2004), who acted as a teaching
witness throughout the experiment. This teacher provided critical feedback and advice
on the implementation process, highlighting areas for improvement or modification. The
teaching witness facilitated real-time reflection and refinement of the instructional
lesson, ensuring a strong connection between students' learning and their experience
with the new intervention (Cobb et al., 2003; Hoadley, 2004).

The two hours lesson adhered to Merrill’s First Principles of Instruction (Merrill,
2002) and the flow outlined in the Hypothetical Learning Trajectory (HLT) in Table 3,
incorporating Desmos-assisted activities. Students’ understanding was evaluated using
the APOS theory (Asiala et al., 1997). Data collection during this phase included video
recordings of the lesson, student work on the Desmos platform, and interview with the
teaching witness. The interview was crucial for gaining deeper insights into participants'
thought processes (Charters, 2003), enabling the researcher to better understand the
teaching witness’s professional opinion and feedback on the newly designed DCIL
instructional lesson, particularly regarding students’ mental construction of the
mathematical concepts. Based on this feedback, the instructional lesson was modified
or refined for subsequent cycles of the teaching experiment.

Retrospective Analysis and Intervention Refinement Phase

The retrospective analysis and intervention refinement are critical elements in the third
phase of design-based research. The retrospective analysis provided real-time insights
into how students learned and constructed their knowledge during the lesson. It allowed
the researcher to critically review the teaching experiment process by comparing
students’ actual learning trajectories with the hypothetical learning trajectories,
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assessing how well they matched. This analysis was based on video recordings of the
lesson, which were transcribed into text. Information about students' mental
constructions and their engagement with Desmos activities was recorded and entered
into the appropriate sections of Table 1 as per displayed in Section “Hypothetical
Learning Trajectories in Instructional Lesson Design”.

Validity and Reliability of this Study

To ensure validity and reliability in this study, several strategies were implemented.
Content validity was ensured through expert validation, where three mathematics
experts reviewed the diagnostic test to confirm its alignment with differential calculus
concepts and its effectiveness in identifying students' difficulties. Additionally, the
instructional content was designed based on these identified challenges and reviewed for
its relevance. Construct validity was maintained by grounding the study in APOS theory,
which provided a structured framework for assessing students’ understanding levels.
The use of a hypothetical learning trajectories (HLT) table as a benchmark further
strengthened the validity of the evaluation.

Triangulation was employed by collecting multiple sources of data, including
interviews with the teaching witness, classroom video recordings, and students' work on
Desmos enhance the validity. This approach provided a more comprehensive and
accurate analysis. Additionally, observer triangulation was incorporated by involving
the course coordinator as the teaching witness of the lesson in observing lessons and
students’ responses able to reduce potential bias in data interpretation.

For reliability, the study ensured inter-rater reliability by having teaching witness
independently observe the real-classroom situations and students’ Desmos work. A
structured coding scheme based on APOS theory in hypothetical learning trajectory table
was used to minimize subjective interpretation.

By integrating these validity and reliability measures, the study ensured a rigorous
and trustworthy evaluation of students' understanding of differential calculus using
Desmos and DBR methodology.

Findings

This study obtained three main data sources, which were video recordings from
classroom observations during teaching experiment phase, students’ work on the
Desmos platform, and interview with the teaching witness.

Classroom Observation and Students’ Work on Desmos

Figure 1 presented an overview of the classroom conditions and seating arrangement.
Students were seated in rows in a computer lab, with a large projector screen positioned
at the centre of the room. One camera was placed in the middle of the classroom to
capture the overall environment, while four additional cameras were positioned at the
front of each row to record group interactions.

At the beginning of the lesson, the instructor initiated a discussion to reflect on
and revise students' prior knowledge regarding the definition of derivatives. This activity
was designed to activate students' previous knowledge. Students were engaged in typing
their answers on the Desmos platform, while the instructor monitored their responses
via the teacher dashboard to gauge their understanding. It was noted that students were
primarily focused on typing and had minimal interaction with their peers. After a short
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while, the instructor displayed students' answers on the screen and facilitated a

discussion about their understanding of the definition of derivatives.

) e
Figure 1: Overview of Teaching Experiment Classroom Situation
Source: Authors’ work

Then the instructor initiated a discussion about graphically understanding the
properties of the original and derivative graphs. She engaged the students by asking them
a few questions on determining the increasing and decreasing intervals of a function.
Initially, students showed confusion regarding the intervals and points, having difficulty
distinguishing between the two. This was evident when a student questioned if the word
"interval™ in the question referred to the distance between points. The instructor then
tried to clarify by pinpointing the regions as intervals and a specific dot as a point using
Desmos.

Instructor : Do you understand what is the difference between interval and points?
Anyone?
Student 2 : Is interval about the distance between points?
Instructor : Yes, intervals represent distances between points.
(ClassroomQObservation_L1)

Initially, almost 50% of the students demonstrated a basic understanding of graph
properties, i.e. at the Action level with many unable to state the increasing interval
correctly. One student even asked the instructor what "increase” meant. Most of these
students did not use accurate x-coordinates when identifying increasing or decreasing
regions on the Desmos platform, often mistakenly identifying the x-intercept as the
starting point of these regions. The instructor further explained the concept to help
students correct their misunderstandings based on the displayed graphs. Figure 2 showed
examples of two students mistakenly used x-intercept as starting point of increasing
region.
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Screen 10 of 22

Determine the intervals where the function is (i)
increasing, (ii) decreasing.
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Figure 2: Example of Students’ Misconception on determine the Starting Point of
Increasing Interval
Source: Authors’ work

During the group activity on Matching Graph Cards in the Desmos platform,
varying levels of participation were observed. Some students actively participated, while
others remained seated and worked alone until the instructor encouraged them to
cooperate with others. From the students” work on Desmos as per displayed on Figure
3, itwas evident that students had limited understanding of matching functions with their
derivatives as there was a few responses involved matching the horizontal graph with
other horizontal graph and linear graphs with another linear graph. This showed that
these students were in Action level of understanding of the derivative concept. Towards
the end of the lesson, it was clear that the instructor was running out of time to discuss

this group activity further, which posed challenges in covering all the necessary lesson
content.

s | e ¢ Mof22 | Next >

Group Activity 1: Match each function with its derivative.

ANSWER KEY .

Figure 3: Example of Students’ Misconception Matching Graphs Activity
Source: Authors’ work

Interviews with Teaching Witness

The interviews with the teaching witness revealed three main themes, which are
strengths of the designed instructional lesson, weaknesses of the lesson, and suggestions
for improvement. The teaching witness observed that the Differential Calculus
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Instructional Lesson (DCIL) effectively delivers lesson content through a practical
approach where it is allowing students to visualize and manipulate graphs on the Desmos
platform. This approach differs from traditional methods, where students only can listen
verbal explanations from the instructor and must imagine the graphs.

Teaching Witness: And the thing is a live thing because they were able to draw, to sketch,
and they were also able to move the mouse here and there to see how
the graph looks like, and so on.

Teaching Witness: Rather than just using graph paper or pencils to draw or to imagine
how the graph looks like.

(Interview_TW: 10 & 14)

The integration of group discussions and student presentations through the
Desmos platform was noted by the teaching witness as a key element in engaging
students. Displaying student work on the screen and discussing various solutions
increased interaction between the instructor and students.

Teaching Witness: | also found out that it was very interactive because this app
promoted engagement between the instructor and the student, as well
as among the students in the group.

(Interview_TW: 8)

The second theme identified was the weakness of the DCIL lesson. The teaching

witness expressed concerns about excessive content and two hours is insufficient for

students to process and understand the lesson fully. The lack of time for exploring more
examples or practices was also highlighted.

Teaching Witness: But I notice that, perhaps it is too much for the students to understand
all of it in just one lesson.
Teaching Witness: Um... the content is too much for them within the two-hour lessons.
(Interview _TW: 16&18)
From the observation by teaching witness, another difficulty encountered by
students was adapting to graph-displayed questions instead of the usual equation-based
questions. The teaching witness observed that students were shocked when first
introduced to these types of questions.

Teaching Witness: The students were shocked when first saw the questions. We seldom
ask them to differentiate it by just looking at the graph.
Teaching Witness: I mean the function without equation given but just the graph.

(Interview_TW:58& 62)

The third theme involved suggestions from the teaching witness for refining the
instructional lesson to better suit students' needs. One suggestion was to have only one
person, such as a group leader in submitting answers for group activities on the Desmos
platform. This is to allow other students to focus on discussions.

Researcher : Is there any suggestion for improvement for this lesson?
Teaching Witness: Okay, for this lesson, regarding the group activity, I think it's better
if only the leader of a group can access and submit the answers.
(Interview_TW: 72-73)
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Another suggestion was to enhance the use of Desmos for better teaching practices,
such as incorporating an online whiteboard feature or a draft box for side-by-side
calculations. The teaching witness praised the platform's ability to share student answers
anonymously through the teacher dashboard.

Teaching Witness: Erm... I'm not sure whether it can be done or not. Maybe there are
other features that we can add to Desmos, such as a blank
whiteboard or draft box.

Researcher . Okay...

Teaching Witness: We can arrange it in a side-by-side view, with what you are currently
teaching on one side and another view for the whiteboard or the
blank screen.

(Interview _TW: 84-88)

Teaching Witness: | observed that after you finished any exercises, the students can
share their solution on the instructor’s screen. Everyone can also
refer to it. | believed that if we continue using this app in the teaching
and learning, it will be able to minimize the time taken by the

instructor to explain.
(Interview _TW: 98-99)

Retrospective Analysis and Refinement
Table 4 presented the retrospective analysis comparing the Hypothetical Learning
Trajectory (HLT) with the Actual Learning Trajectory (ALT).

Table 4: Retrospective Analysis Outcomes

Task formulation Hypothetical Learning Trajectory
Conjecture of how the lesson be conducted
Introduction 1. The instructor helps the students recall their knowledge about the definition
of the derivative of a function.
Lesson Content 1. The instructor demonstrates several graphs, including linear, quadratic, and

cubic graphs, on the Desmos platform.
2. The instructor guides students in determining the increasing and decreasing
intervals for the displayed graphs.
3. The instructor helps students relate the positive/negative values of the
derivative function to the increasing/decreasing intervals of the functions.
Classroom 1. Students are divided into groups to discuss the Matching Graph Cards activity
Discussion on the Desmos platform.
2. The instructor monitors their strategies and progress through the Teacher
Dashboard on the Desmos platform.
Take-home The instructor gives the Desmos link to the students to complete the task at
Exercises home.
Source: Authors’ work

Several important refinements were made to this lesson after compiling and analysing
the data obtained from classroom observations, student work, feedback from teaching
witnesses through interviews, and retrospective analysis of the HLTs and ALTSs. One
significant change was the reduction of the lesson content from covering all three types
of functions to focusing on just two types, which are linear and quadratic functions with
their derivatives. This adjustment was made because observations and interviews with
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teaching witnesses revealed that the original content was too extensive for a two-hour
lesson, making it difficult for students to process and understand the material effectively.

By emphasizing these two types of functions, it is believed that students will be
able to focus better and learn the important properties of the graphs of linear and
quadratic functions and their derivatives. Once students have a solid understanding of
these concepts, they can then apply what they have learned to cubic functions and their
derivatives.

Additionally, based on a recommendation from a teaching witness, a draft box was
added to the slides of the Desmos instructional lesson. The draft box allows students to
draft their answers without submitting them to the teacher dashboard for sharing with
their classmates. This feature helps students prepare their solutions more comfortably
and allows the instructor to review only the completed final solutions. Figure 4 illustrates
the overview of the slides before refinement, while Figure 5 shows the interface of the
slide after amendments to the DCIL lesson.

Let's look at the previous example. The purple graph is a derivative for f(x).
s T Vi & - Determine the intervals where the derivative
— function is in (ii) negative value.

10

Figure 4: The Interface of the Slide before Refinement
Source: Authors’ work

Let's look at the previous example. The purple graph is a derivative for f(x).

sl e - Determine the intervals where the derivative
- function is in (ii) negative value.

" /T'.Ee_ -

& L] vi

Figure 5: The Interface of the Slide after Refinement
Source: Authors’ work

Discussion
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From the diagnostic test results, it was observed that less than 4% of students were able
to achieve the Object and Schema levels of understanding in Questions 4 and 5, which
involved graphing problems and applications of differential calculus. This finding was
reinforced through classroom observations and analysis of students' work on the Desmos
platform. These observations revealed that most students demonstrated proficiency only
at the Process level of understanding. This indicates a significant initial deficiency in
students’ understanding of differential calculus concepts. Similar trends have been
reported in previous studies by Nagle et al. (2019), and Maharaj and Ntuli (2018) who
also found that most participants operated predominantly at the Process level when
engaging with calculus concepts.

Interviews with the teaching witness highlighted the effectiveness of the
Differential Calculus Instructional Lesson (DCIL) in allowing students to visualise and
manipulate graphs on the Desmos platform. This method contrasts with traditional
approaches, where students rely solely on verbal explanations and are required to
mentally imagine graphs. The practical hands-on approach aligns with Yimer's (2022)
findings which demonstrated that integrating cooperative learning with GeoGebra
enabled students to better visualise abstract concepts through technology. Furthermore,
Rolf and Slocum (2021) emphasized that effective instructional lessons depend on
strong interaction between instructors and students, a criterion the DCIL successfully
fulfilled according to the teaching witness. Another strength of the DCIL is its iterative
and flexible design process, which supports continuous refinement and adaptation to
address students' learning needs. This reflects key characteristics of design-based
research as outlined by Bakker and van Eerde (2015) and Wittmann (2019), emphasizing
the importance of ongoing development, implementation, and evaluation of instructional
materials and their impact on students' learning processes.

Despite its strengths, the teaching witness identified several areas for improvement
in the DCIL. One notable challenge was the inability to complete all tasks within the
two-hour lesson timeframe. Keiser and Lambdin (1996) observed that innovations in
mathematics teaching often require more time due to the incorporation of diverse
strategies and assessment approaches. Similarly, the Organisation for Economic Co-
operation and Development (2020) warned that attempting to cover both the depth and
breadth of content within constrained timeframes can lead to content overload. To
address this, it is essential to plan carefully when designing new interventions in teaching
and learning. Another issue noted was that students struggled with graph-based
questions when equations were not explicitly provided. Habre and Abboud (2006)
mentioned that traditional approaches focusing solely on memorising formulas and
symbolic aspects hinder students' understanding and visualisation of graph properties.
This lack of familiarity hindered students’ initial adaptation to the DCIL instructional
lesson.

One recommendation from the teaching witness on suggestions for refining the
instructional lesson was to implement task distribution among group members.
Assigning specific roles within groups encourages better engagement in discussions and
collaborative work. This approach is supported by Bénéteau, Guadarrama, Guerra, Lenz,
Lewis, and Straumanis (2017), who found that assigning roles fosters communication
skills and increases engagement through structured practice. Another critical suggestion
was the need for educators to develop a deeper understanding of Desmos' functionalities.
Research by Shé, Bhaird, et al. (2023) and Shé, Fhloinn, et al. (2023) highlighted the
importance of integrating technology into academic environments to engage students
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effectively. Future instructional designs could benefit from incorporating more
advanced functionalities of platforms like Desmos, further enhancing their effectiveness

in teaching complex mathematical concepts.

Limitation/Implications/Conclusion

This study aimed to design DCIL, an instructional lesson with activities facilitated by
Desmos Classroom Activities to explore pre-university students' understanding of
differential calculus concepts. To achieve this, a methodology integrating Asiala’s
APOS theoretical analysis with Merrill's First Principles of Instruction and a
hypothetical learning trajectory based on design-based research was used to design
DCIL. The refinement was finalised after a teaching experiment and based on the data
analysis obtained to create a better instructional lesson that suits the students’ needs and
their mental constructions. This study has significant benefits for curriculum developers,
pre-university lecturers or instructors, and students. It provides valuable insights for
curriculum developers and instructors on how to incorporate technology such as Desmos
into differential calculus curriculum and lessons. It offers guidelines for implementing
design-based instructional strategies in mathematics lessons. Most importantly, this
study provides the greatest benefit for students, allowing them to experience different
learning strategies where DCIL offers visualisation for learning differential calculus and
engages them in a more interactive learning environment. By addressing its current
limitations and leveraging technology effectively, the instructional design using design-
based research approach can better support students in achieving higher levels of
understanding in in challenging mathematics topics like differential calculus.
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