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Abstract 

 

Malaysian students often struggle with the abstract and complex concepts of calculus, 

primarily due to a weak foundational understanding of functions, which is a fundamental 

element in learning calculus. Traditional teaching methods in Malaysia further make 

worse this issue by emphasizing computational procedures over conceptual 

understanding. Addressing these challenges, this study aims to design and refine a 

Differential Calculus Instructional Lesson to enhance students' understanding. Using a 

design-based research methodology, the study followed three phases: preparation and 

design, teaching experiment, and retrospective analysis with intervention refinement. In 

the first phase, a diagnostic test identified students’ specific difficulties related to graphs 

and graphing in differential calculus. A teaching experiment was then conducted in a 

pre-university class, where data were gathered through classroom observations, students’ 

work on the Desmos platform, and interviews with a teaching witness. Analysis revealed 

that the instructional lesson effectively provided visual aids that aided learning, but most 

students only attained a basic, Action-level understanding of graphs and graphing. The 

retrospective analysis highlighted key areas for improvement. The lesson’s extensive 

content within a two-hour session limited deep learning. To address this, two 

refinements were introduced, which are introducing a draft box feature for students to 

comfortably draft their answers and a narrowed focus on linear and quadratic graphs and 

their derivatives. These adjustments aimed to align the lesson with students' cognitive 

load and time constraints. This study contributes valuable insights into the application 

of design-based research for developing effective educational interventions. The 

refinement phase demonstrated the need to align instructional content with students’ 

learning capacities. Findings offer practical guidance for educators and instructional 

designers on integrating theoretical frameworks into design-based research cycle and 

teaching strategies, ultimately address learning gaps and promote conceptual 

understanding in differential calculus. 

 

Keywords: Action-Process-Object-Schemas (APOS) Theory, Design-Based Research, 

Differential Calculus, Hypothetical Learning Trajectories, Merrill’s First Principle of 

Instruction  

 

Introduction  

 

Differentiation topic is one of the fundamental branches of calculus, which is an essential 

subject in the fields of Science, Technology, Engineering, and Mathematics (STEM). 

Differentiation primarily deals with rates of change, slopes of functions, graphing, and 
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its application in real-world contexts, making it a crucial component in mathematical 

modelling (Saad, Abu Mansor, Azudin, & Mohd Hamdi, 2024). In Malaysia, calculus 

concepts have been introduced since secondary school as part of the additional 

mathematics syllabus (Awang Salleh & Zakaria, 2012; Awang & Zakaria, 2013). 

According to Parrot and Leong (2018), Malaysian students often struggle to understand 

the abstract and complex ideas inherent in calculus, leading to frustration and a lack of 

understanding. One major contributing factor is their weak foundation in understanding 

functions, which is a fundamental concept in calculus (Drlik, 2015). 

 Traditional calculus classes often emphasize computational procedures without 

placing enough importance on conceptual understanding. These traditional teaching 

strategies tend to present a "list of procedures to follow," leading students to just practice 

the routine algebraic manipulations without truly understanding the underlying concepts. 

According to Mendezabal and Tindowen (2018), the traditional approach prevents 

students from effectively applying calculus concepts, as it emphasizes algebraic 

techniques rather than adopting a balanced approach that includes graphical, numerical, 

and analytical methods. In the current teaching and learning environment for calculus, 

there is a challenge in achieving a balance between conceptual understanding and 

procedural fluency. This imbalance can limit students' understanding of calculus 

concepts and their ability to apply them to real-world problem situations (Awang Salleh 

& Zakaria, 2012). 

 According to Harris (1996), our current education system focuses too much on 

giving students extensive practice with exercises and assuming that repeated practice 

leads to mastery of the topic. While this approach may improve procedural skills, it 

prevents students from achieving a deeper level of mathematical understanding. As a 

result, students may find it challenging to apply the concepts they have learned to real-

world problems due to a lack of conceptual depth. Therefore, an integrated approach is 

needed to enhance both conceptual understanding and procedural fluency which will 

improve students’ mathematical competency. 

 Visualisation is one of the key elements in solving mathematical problems 

especially in word problems (Ahmad et al., 2010). Ahmad Tarmizi et al. (2010) and 

Makgakga and Makwakwa (2016) found that students often struggle with understanding 

the concepts of limits, derivatives, and integrals, which are fundamental to calculus. 

These difficulties arise because students are unable to visualise the mathematical 

concepts, especially those related to function transformations which are the essential 

aspects of calculus (Fitriani, Pasaribu, Novitasari, Samosir, & Yusmiati, 2023). 

Makgakga and Makwakwa (2016) stated that students' struggles with mastering calculus 

concepts lead to poor learning outcomes and difficulties in problem-solving. Therefore, 

incorporating technology into the teaching and learning of calculus is crucial as it can 

help students visualise these concepts. Numerous studies have explored the use of 

technology in teaching mathematics, including the use of graphic calculators (Chien, 

2019; Parrot & Leong, 2018), GeoGebra (Listiana, Aklimawati, Wulandari, & Isfayani, 

2022; Sari, Hadiyan, & Antari, 2018), and Geometer’s Sketchpad (Ganesan & Leong, 

2020; Kotu & Weldeyesus, 2022). 

 When incorporating technology into the calculus learning process, it should not be 

assumed that learning will automatically improve (Vajravelu & Muhs, 2016) and only 

look for the improvement on the students’ result. Instead, there should be a focus on the 

correct and appropriate implementation of technology tools and a better understanding 

of how students construct their understanding when exposed to newly designed 

instructional lessons. Innovation occurs when it suits students' needs, and the technology 
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is implemented thoughtfully in the curriculum. Current implementations of technology 

or instructional design often perform well in organizing and delivering courses. 

However, there is a lack of attention to the implementation process and students’ 

learning experiences, particularly their knowledge construction in these learning 

environments (Badali, Hatami, Farrokhnia, & Noroozi, 2020; Cai & Moallem, 2022), 

and students’ active engagements and interactions (Yılmaz, Unal, & Cakir, 2017). 

 Therefore, this study is conducted to design an instructional lesson namely 

Differential Calculus Instructional Lesson (DCIL) which is incorporating with the use 

of Desmos. The teaching and learning process of differential calculus, including 

instructional notes and group activities, fully utilised Desmos. Students’ understanding 

is explored using APOS theory when instructors use this newly designed instructional 

lesson.  

 This study integrates APOS Theory, Hypothetical Learning Trajectories (HLT), 

and Merrill’s First Principles of Instruction to provide a comprehensive framework for 

designing instructional lesson aided with Desmos and also for the exploration of students’ 

understanding of differential calculus. APOS Theory is essential for analysing students’ 

cognitive processes involved in concept formation, ensuring that students’ progress from 

action-based understanding to higher-order thinking (Borji, Alamolhodaei et al., 2018). 

HLT provides a structured learning pathway, allowing for systematic instructional 

design that aligns with students' cognitive development (Simon, 2014). Merrill’s First 

Principles further enhance the framework by emphasizing active learning through the 

activation of prior knowledge and guided application, ensuring that students not only 

develop conceptual understanding but also apply their knowledge effectively (Truong, 

Elen, & Clarebout, 2019). 

 The need for this integrated approach stems from gaps in existing research, where 

instructional methods often focus on either cognitive development or instructional 

strategies in isolation. Maqsood, Ceravolo, Ahmad, and Sarfraz (2023) highlighted that 

traditional methods frequently fail to fully leverage learning trajectories in instructional 

design, opting instead for data mining and visualization techniques to analyse students' 

course trajectories. Additionally, traditional approaches often lack a structured 

mechanism for supporting and understanding students' cognitive development, leading 

to fragmented learning experiences. By integrating APOS Theory for cognitive 

structuring, HLT for instructional scaffolding, and Merrill’s Principles for learner-

centered instructional design, this study provides a more systematic and effective 

instructional model aimed at improving student learning outcomes in differential 

calculus.  

 This study is guided by the following research questions: 

1. How does students' mathematical understanding of graphs and graphing in differential 

calculus develop based on APOS theory when they engage with a Desmos-based 

instructional lesson? 

2. To what extent does students’ actual learning align with the hypothetical learning 

trajectory as identified through retrospective analysis? 

3. What refinements can be implemented to improve the design of the Differential 

Calculus Instructional Lesson (DCIL)? 

 

Literature Review  

 

APOS Theory in Learning Calculus 
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The Action-Process-Object-Schema (APOS) theory is a constructivist framework 

extensively employed to investigate students' understanding of mathematical concepts, 

particularly in calculus. Founded by Dubinsky (1991), it is valued for its ability to bridge 

research and teaching (Oktac, Trigueros, & Romo, 2019). According to Dubinsky (1991), 

APOS theory posits that learning mathematical concepts involves constructing mental 

structures: actions, processes, objects, and schemas. These structures are essential for 

students to achieve a profound understanding of mathematical concepts. 

 In the context of calculus, APOS theory has been utilised to analyse students' 

understanding of concepts such as limits, derivatives, and integrals. Researchers have 

developed genetic decompositions, which describe the mental constructions necessary 

for students to fully understand these concepts (Cetin, 2009; Maharaj, 2010). Studies 

employing APOS theory reveal that many students struggle to progress from an action 

or process conception of calculus concepts to a more robust understanding involving 

objects and schemas (Borji & Martínez-Planell, 2020; Listiawati & Juniati, 2021; Nagle, 

Martínez-Planell, & Moore-Russo, 2019). For instance, students may be proficient in 

computing derivatives procedurally but find it challenging to interpret derivatives 

graphically or conceptually (Borji, Font, et al., 2018). 

 Borji, Alamolhodaei et al. (2018) implemented the APOS-ACE (Action, Process, 

Object, Schema - Activities, Classroom discussion, Exercises) instructional approach to 

help students develop appropriate mental structures. This approach involves designing 

activities, classroom discussions, and exercises to guide students through constructing 

actions, processes, objects, and schemas for differential calculus concepts. The 

following outlines the key aspects of each APOS level that facilitate students' 

understanding of calculus: 

(a) Action- Initially, students understand derivatives through procedural actions, 

such as calculating derivatives using formulas or rules, and they require external 

guidance. This action-based understanding is crucial for developing a deeper 

comprehension of derivatives, particularly in choosing the correct formulas or rules for 

calculations (Maharaj, 2013). 

(b) Process - As students advance, they begin to perceive derivatives as processes 

and can perform derivative calculations without explicitly executing them. They start to 

conceptualise the derivative process mentally (Borji, Alamolhodaei, et al., 2018). 

(c) Object - Subsequently, students develop an object-based understanding of 

derivatives, allowing them to visualise and interpret the derivative as a mathematical 

entity. This stage involves encapsulating the process understanding into an object, 

including comprehending the derivative as a slope, a rate of change, or an instantaneous 

rate of change (Maharaj, 2010). 

(d) Schema - Finally, students construct a schema for derivatives, a mental 

framework integrating actions, processes, and objects. This schema enables students to 

apply derivatives in various contexts and recognize the derivative as a fundamental 

concept in calculus (Borji, Font, et al., 2018; Maharaj, 2010). 

 APOS theory proves beneficial in guiding and assisting students in developing a 

comprehensive understanding of calculus, transitioning from procedural actions to 

deeper conceptual insights (Borji & Martínez-Planell, 2020; Listiawati & Juniati, 2021; 

Nagle et al., 2019). Thus, this study employs APOS theory to explore students' 

understanding of differential calculus when exposed to newly designed instructional 

lessons. 
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Hypothetical Learning Trajectories in Instructional Lesson Design 

Hypothetical Learning Trajectory (HLT) is the theoretical model utilised by researchers, 

teachers, and curriculum developers to design mathematics instruction aimed at 

conceptual learning. HLTs consist of three key components: a learning goal, a set of 

learning tasks, and a hypothesized learning process. This model was first proposed by 

Simon (1995). HLTs are crucial for discovering and understanding how students learn 

and develop their comprehension of complex concepts. They are designed to guide 

students through the learning process, identifying key landmarks and potential obstacles 

as they transition from a naive to a more sophisticated understanding of a concept (Ivars, 

Fernández, Llinares, & Choy, 2018). The development of HLTs involves understanding 

students' current knowledge, describing fundamental aspects of assimilation and fixation, 

selecting appropriate tasks, and preparing teachers for possible interventions (Morales 

Carballo, Damián Mojica, & Marmolejo Vega, 2022). Table 1 presents an example of 

the Hypothetical Learning Trajectory used in this study. 
 

Table 1: Example of Hypothetical Learning Trajectory and Actual Learning 

Trajectory Table with APOS Genetic Decomposition 
Hypothetical Learning Trajectory Actual Learning 

Task 

Formulation 

Conjecture of 

how students 

would respond 

Evaluation for 

students’ 

understanding based 

on APOS theory 

Transcript 

Excerpt/ 

Clarification 

Quantitative 

impression of how 

well the conjecture and 

actual learning 

matched (e.g., −, 0, +) 

Source: Adapted from Bakker & van Eerde, 2015, p.442 

 

Merrill’s First Principles of Instruction 

Based on Merrill's (2002) first principles of instruction, instructional activities should 

be centered on real-world problems or tasks, such as optimization functions or graphing 

and modelling population growth. According to Merrill, the design of instructional 

lessons consists of four phases. First, educators should activate students’ prior 

knowledge. In this phase, educators engage learners by helping them recall and stimulate 

their existing knowledge, connecting it with new information (Merrill, 2018). For 

instance, they might use derivative concepts to model the motion of objects or optimise 

business incomes. Second, educators should use clear examples to demonstrate new 

knowledge and illustrate the desired learning outcomes (Jalilehvand, 2016).  

 Next, students should apply their new knowledge in authentic contexts (Choi, 

2014). They integrate their knowledge into problem-solving activities, such as solving 

optimisation problems using calculus by incorporating these principles, educators can 

create engaging and effective instructional lessons for students in differential calculus, 

thereby promoting deeper understanding and transferable knowledge. 

 There were few studies have explored the use of the first principles of instruction 

in instructional design. For example, Badali et al. (2020) examined their application in 

MOOC design to explore student learning and satisfaction. Their study found that 

incorporating these principles led to improved student learning outcomes and higher 

satisfaction levels. The structured approach helped students engage more effectively 

with the course content. Cai and Moallem (2022) focused on redesigning an online 

graduate course using a rapid prototype approach whereas Cheung and Hew (2015) 

explored their application in designing a blended learning course. Gardner (2011) 

investigated improving student performance in introductory biology courses. These 

findings suggest that the First Principles of Instruction serve as a valuable framework 
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for designing effective learning experiences that promote meaningful and lasting 

learning. 

 

Desmos as an Instructional Tool for Teaching and Learning 

Desmos is a graphing calculator available as both a web-based application and mobile 

platforms. It has several interactive features such as Activities Builder, Graphing 

Calculator, and Classroom Activities, where educators can use to create engaging 

classroom activities to attract their students in the lessons, or assessment tasks to 

evaluate their students’ mathematical understanding. The use of Desmos is not limited 

to mathematics or science teachers in their classroom teaching but also can be used by 

language teachers to develop task-based games to engage their students in designed 

learning environment that can help in improving their communication skills (Caniglia, 

Borgerding, & Meadows, 2017). The activities designed aims to encourage students to 

be active listeners, with those in the position to give the instruction able to deliver clear 

communication. 

 Unlike traditional hand-held technology tools such as graphic calculator, Desmos 

is more intuitive and simpler to operate (Ebert, 2015). Normally, altering graph 

dimensions on graphing calculator involves numerous steps, however, it is much simpler 

on Desmos, where we can just simply press the plus/minus button on the screen to zoom 

in and out the graph. Such simplicity directly addresses a common issue associated with 

the use of technology, which is the intrinsic complexity of the technology tools that 

prevents students from efficiently using it (Hillman, 2014). This is supported by Thomas’ 

(2016) argument that students spent too much time on the mechanics of operating the 

typical graphic calculator, which the simplicity of Desmos may alleviate the potential 

stress among students using it when completing math problems. By reducing 

technological frictions, it creates a classroom environment where learning is both 

accessible and intellectually stimulating. 

 Educators are encouraged to employ a number of innovative tools to demonstrate 

various forms of mathematical relationships such as in graphical, symbolic, or tabular 

form. Technology can aid in the understanding of mathematical concepts if implemented 

appropriately (Gertenbach & Bos, 2016). For example, Ebert (2015) employed Desmos 

as a platform to assign a graphing project to his students to reinforce their comprehension 

of function concepts. The study demonstrated how students’ ability to graph the general 

shapes of functions, graph transformation, and graphing functions based on the restricted 

domain and range significantly enhanced after completing the project task. Besides that, 

Desmos is a platform for teachers to evaluate their students’ mathematical understanding 

on the concepts learned (Gulati, 2016; Zheng, Naresh, & Edwards, 2020). Students can 

articulate their ideas and problem-solving processes on the assigned activities board 

where teachers can view them in real time. This function is useful especially for teachers 

who wish to directly track their students’ progress in understanding of the lesson content. 

 

Methodology  

 

This study employed a design-based research (DBR) method to design an instructional 

unit namely Differential Calculus Instructional Lesson (DCIL). The main aim is to 

explore students’ understanding on differential calculus. DBR is chosen for this study 

because it enables the iterative development, analysis and refinement of the designed 

instructional lesson (Kennedy-Clark, 2013), making it particularly suitable for 

educational settings where controlled experiments may not be feasible. Besides that, 
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DBR bridges the gap between theory and practice by addressing real educational 

challenges while simultaneously generating theoretical insights (Barab & Squire, 2004).  

There are three important phases in this DBR approaches which are preparation 

and design phase, teaching experiment phase, and lastly, retrospective analysis and 

refinement phase. DBR emphasizes on iterative cycles of design, implementation during 

teaching experiment phase, and continuous refinement of instructional interventions 

based on real-world feedback and outcomes. The scope of this study was limited to the 

first cycle of the design-based research process to ensure a detailed yet concise 

discussion, as including multiple cycles would result in an excessively lengthy report. 

 

Preparation and Design Phase 

A diagnostic test was given to 32 students who participated in this research during the 

preparation and design phase. Their scores on the diagnostic test served as an initial 

benchmark of their knowledge of differential calculus. Additionally, the test analysis 

result obtained helped researchers understand which calculus concepts needed emphasis 

and to be included in the intervention during the design process (Gravemeijer, 1994). 

The test content was validated by three mathematics experts, each having over 10 years 

of teaching experience in the mathematics subject to ensure accuracy and relevance. The 

analysis of the test results was then used to develop a hypothetical learning trajectory 

(HLT) for the lesson. The genetic decomposition of students' mental constructions which 

based on APOS theory (Dubinsky & McDonald, 2001) in relation to their understanding 

of each designed activity was included into the HLT as well. The lesson was designed 

in order to address the difficulty areas that identified from the test analysis, and it aimed 

to provide targeted instruction to improve students' understanding of differential 

calculus. Table 2 presented the students' APOS Achievement for the Diagnostic Test. 

 

Table 2: Students' APOS Achievement for Diagnostic Test 
Question Percentage of Students (%) 

Action Process Object Schema Zero Marks/ No 

answer given 

1 25% 34.3% 18.8% 6.3% 15.6% 

2 6.3% 40.6% 6.3% 21.8% 25% 

3 21.9% 28.1% 28.1% 0% 21.9% 

4 50% 15.6% 0% 0% 34.4% 

5 40.7% 12.5% 0% 3.1% 43.7% 

Source: Author’s work 

 

 The nature of Question 1 required students to apply the quotient rule to find the 

derivative of a given function and identify the x-coordinates of stationary points. 

Question 2 tested students' understanding of the gradients of tangent and normal lines, 

as well as their interrelationship. Question 3 involved an optimisation scenario where 

students had to determine the maximum volume of water that could be held in a water 

tank. Question 4 tasked students with interpreting information from displayed graphs, 

identifying their slopes, and subsequently sketching the graphs of their derivatives. 

Question 5 instructed students to graphically represent a cubic function based on a 

provided equation. 

 Analysis of Table 2 revealed weaknesses among students in graph interpretation 

and graph-related problems, specifically with few achieving Object and Schema levels. 

A significant percentage of students either scored zero marks or did not attempt 

Questions 4 and 5. Consequently, the researcher opted to emphasize topics related to 
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graphs and graphing in differential calculus. Table 3 below presents the Hypothetical 

Learning Trajectory used in the DCIL instructional lesson, incorporating the Desmos 

platform as part of this study.  

 

Table 3: Hypothetical Learning Trajectory with APOS Genetic Decomposition 
Hypothetical Learning Trajectory (HLT) 

Activity Merrill’s First 

Principles of 

Instruction 

Conjecture of how the lesson 

be conducted 

Students’ understanding 

evaluation based on APOS 

theory 

Introduction Activation  

 

The instructor helps the 

students recall their 

knowledge of the definition of 

the derivative of a function.  

NA 

Lesson 

Content 

Demonstration 1. The instructor demonstrates 

several graphs, including 

linear, quadratic, and cubic 

graphs, on the Desmos 

platform. 

2. The instructor guides the 

students in determining the 

increasing and decreasing 

intervals for the displayed 

graphs. 

3. The instructor guides the 

students in relating the 

positive and negative values of 

the derivative function to the 

increasing and decreasing 

intervals of the functions. 

 

Action: The students are able to 

determine the position of the 

point where the graph changed 

its slope.  

Process: The students are able 

to determine the increasing and 

decreasing intervals from the 

stationary points.  

Object: The students are able to 

relate the increasing and 

decreasing behavior of the 

graph 𝑓 to the positive and 

negative values of the derivative 

graph on the corresponding 

intervals.  

Schema: The students are able 

to establish relationships 

between the derivative function 

and the original function, 

regardless of the type of 

function. 

Classroom 

Discussion 

Application and 

Integration 

1. Students are organized into 

groups to engage in the 

Matching Graph Cards 

activity on the Desmos 

platform. 

2. Instructor monitors their 

strategies and progress using 

the Teacher Dashboard within 

the Desmos platform. 

 

 

Action: Students capable of 

identifying pairs of linear and 

quadratic graphs to form 

original-derivative pairs. 

Incorrect responses may occur 

as they recall that the derivative 

of a function is one degree 

lower than the original graph. 

Process: Through mental 

repetition of differentiation 

techniques, students 

successfully match a horizontal 

line as the derivative of a linear 

graph, reflecting the constant 

nature of the derivative of a 

linear function. 

Object: Students establish 

connections between intervals 

of increase or decrease in the 

original function's graph and the 

positive or negative values of its 

derivative over corresponding 

intervals. 
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Schema: By relating graph 

properties such as slope, tangent 

lines, original functions, 

derivatives, and derivatives at 

critical points, students 

construct a comprehensive 

framework for accurately 

matching derivative functions 

with their respective original 

function graphs. 

Take Home 

Exercise 

Application and 

Integration 

1. Instructor briefs and shares the 

Desmos link with students, 

enabling them to complete the 

task independently at home. 

NA 

Source: Authors’ work 

 

Teaching Experiment Phase 

Following the completion of the instructional lesson design and its implementation, a 

teaching experiment was conducted in a real pre-university classroom setting. This 

research was carried out in a private institution in Sarawak with a sample of 32 students. 

For the sampling technique, a purposive sampling approach was employed. The 

selection of participants was determined by the institution, focusing on a group of 

science pre-university students who were the target learners for the instructional 

intervention. In this experiment, the researcher assumed the role of the instructor, 

diverging from traditional experimental designs where researchers typically do not serve 

as instructors (Cobb, Confrey, Disessa, Lehrer, & Schauble, 2003; Molina, Castro, & 

Castro, 2007). The researcher collaborated closely with a teacher familiar with the 

classroom environment (Collins, Joseph, & Bielaczyc, 2004), who acted as a teaching 

witness throughout the experiment. This teacher provided critical feedback and advice 

on the implementation process, highlighting areas for improvement or modification. The 

teaching witness facilitated real-time reflection and refinement of the instructional 

lesson, ensuring a strong connection between students' learning and their experience 

with the new intervention (Cobb et al., 2003; Hoadley, 2004). 

 The two hours lesson adhered to Merrill’s First Principles of Instruction (Merrill, 

2002) and the flow outlined in the Hypothetical Learning Trajectory (HLT) in Table 3, 

incorporating Desmos-assisted activities. Students’ understanding was evaluated using 

the APOS theory (Asiala et al., 1997). Data collection during this phase included video 

recordings of the lesson, student work on the Desmos platform, and interview with the 

teaching witness. The interview was crucial for gaining deeper insights into participants' 

thought processes (Charters, 2003), enabling the researcher to better understand the 

teaching witness’s professional opinion and feedback on the newly designed DCIL 

instructional lesson, particularly regarding students’ mental construction of the 

mathematical concepts. Based on this feedback, the instructional lesson was modified 

or refined for subsequent cycles of the teaching experiment. 

 

Retrospective Analysis and Intervention Refinement Phase 

The retrospective analysis and intervention refinement are critical elements in the third 

phase of design-based research. The retrospective analysis provided real-time insights 

into how students learned and constructed their knowledge during the lesson. It allowed 

the researcher to critically review the teaching experiment process by comparing 

students’ actual learning trajectories with the hypothetical learning trajectories, 
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assessing how well they matched. This analysis was based on video recordings of the 

lesson, which were transcribed into text. Information about students' mental 

constructions and their engagement with Desmos activities was recorded and entered 

into the appropriate sections of Table 1 as per displayed in Section “Hypothetical 

Learning Trajectories in Instructional Lesson Design”. 
 

Validity and Reliability of this Study 

To ensure validity and reliability in this study, several strategies were implemented. 

Content validity was ensured through expert validation, where three mathematics 

experts reviewed the diagnostic test to confirm its alignment with differential calculus 

concepts and its effectiveness in identifying students' difficulties. Additionally, the 

instructional content was designed based on these identified challenges and reviewed for 

its relevance. Construct validity was maintained by grounding the study in APOS theory, 

which provided a structured framework for assessing students’ understanding levels. 

The use of a hypothetical learning trajectories (HLT) table as a benchmark further 

strengthened the validity of the evaluation.  

Triangulation was employed by collecting multiple sources of data, including 

interviews with the teaching witness, classroom video recordings, and students' work on 

Desmos enhance the validity. This approach provided a more comprehensive and 

accurate analysis. Additionally, observer triangulation was incorporated by involving 

the course coordinator as the teaching witness of the lesson in observing lessons and 

students’ responses able to reduce potential bias in data interpretation. 

For reliability, the study ensured inter-rater reliability by having teaching witness 

independently observe the real-classroom situations and students' Desmos work. A 

structured coding scheme based on APOS theory in hypothetical learning trajectory table 

was used to minimize subjective interpretation.  

By integrating these validity and reliability measures, the study ensured a rigorous 

and trustworthy evaluation of students' understanding of differential calculus using 

Desmos and DBR methodology. 

 

Findings 

 

This study obtained three main data sources, which were video recordings from 

classroom observations during teaching experiment phase, students' work on the 

Desmos platform, and interview with the teaching witness. 

 

Classroom Observation and Students’ Work on Desmos 

Figure 1 presented an overview of the classroom conditions and seating arrangement. 

Students were seated in rows in a computer lab, with a large projector screen positioned 

at the centre of the room. One camera was placed in the middle of the classroom to 

capture the overall environment, while four additional cameras were positioned at the 

front of each row to record group interactions. 

 At the beginning of the lesson, the instructor initiated a discussion to reflect on 

and revise students' prior knowledge regarding the definition of derivatives. This activity 

was designed to activate students' previous knowledge. Students were engaged in typing 

their answers on the Desmos platform, while the instructor monitored their responses 

via the teacher dashboard to gauge their understanding. It was noted that students were 

primarily focused on typing and had minimal interaction with their peers. After a short 
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while, the instructor displayed students' answers on the screen and facilitated a 

discussion about their understanding of the definition of derivatives. 

 

 
Figure 1: Overview of Teaching Experiment Classroom Situation 

Source: Authors’ work 

 

 Then the instructor initiated a discussion about graphically understanding the 

properties of the original and derivative graphs. She engaged the students by asking them 

a few questions on determining the increasing and decreasing intervals of a function. 

Initially, students showed confusion regarding the intervals and points, having difficulty 

distinguishing between the two. This was evident when a student questioned if the word 

"interval" in the question referred to the distance between points. The instructor then 

tried to clarify by pinpointing the regions as intervals and a specific dot as a point using 

Desmos. 

 

Instructor : Do you understand what is the difference between interval and points? 

Anyone? 

Student 2 : Is interval about the distance between points? 

Instructor : Yes, intervals represent distances between points. 

 (ClassroomObservation_L1) 

 

 Initially, almost 50% of the students demonstrated a basic understanding of graph 

properties, i.e. at the Action level with many unable to state the increasing interval 

correctly. One student even asked the instructor what "increase" meant. Most of these 

students did not use accurate x-coordinates when identifying increasing or decreasing 

regions on the Desmos platform, often mistakenly identifying the x-intercept as the 

starting point of these regions. The instructor further explained the concept to help 

students correct their misunderstandings based on the displayed graphs. Figure 2 showed 

examples of two students mistakenly used x-intercept as starting point of increasing 

region.  
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Figure 2: Example of Students’ Misconception on determine the Starting Point of 

Increasing Interval 
Source: Authors’ work 

 

 During the group activity on Matching Graph Cards in the Desmos platform, 

varying levels of participation were observed. Some students actively participated, while 

others remained seated and worked alone until the instructor encouraged them to 

cooperate with others. From the students’ work on Desmos as per displayed on Figure 

3, it was evident that students had limited understanding of matching functions with their 

derivatives as there was a few responses involved matching the horizontal graph with 

other horizontal graph and linear graphs with another linear graph. This showed that 

these students were in Action level of understanding of the derivative concept. Towards 

the end of the lesson, it was clear that the instructor was running out of time to discuss 

this group activity further, which posed challenges in covering all the necessary lesson 

content. 

 

 

Figure 3: Example of Students’ Misconception Matching Graphs Activity 

Source: Authors’ work 

 

Interviews with Teaching Witness  

The interviews with the teaching witness revealed three main themes, which are 

strengths of the designed instructional lesson, weaknesses of the lesson, and suggestions 

for improvement. The teaching witness observed that the Differential Calculus 
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Instructional Lesson (DCIL) effectively delivers lesson content through a practical 

approach where it is allowing students to visualize and manipulate graphs on the Desmos 

platform. This approach differs from traditional methods, where students only can listen 

verbal explanations from the instructor and must imagine the graphs.  

 

Teaching Witness : And the thing is a live thing because they were able to draw, to sketch, 

and they were also able to move the mouse here and there to see how 

the graph looks like, and so on. 

Teaching Witness : Rather than just using graph paper or pencils to draw or to imagine 

how the graph looks like. 

 (Interview_TW: 10 & 14) 

 

 The integration of group discussions and student presentations through the 

Desmos platform was noted by the teaching witness as a key element in engaging 

students. Displaying student work on the screen and discussing various solutions 

increased interaction between the instructor and students.  

 

Teaching Witness: I also found out that it was very interactive because this app 

promoted engagement between the instructor and the student, as well 

as among the students in the group. 

 (Interview_TW: 8) 

 The second theme identified was the weakness of the DCIL lesson. The teaching 

witness expressed concerns about excessive content and two hours is insufficient for 

students to process and understand the lesson fully. The lack of time for exploring more 

examples or practices was also highlighted.  

 

Teaching Witness : But I notice that, perhaps it is too much for the students to understand 

all of it in just one lesson. 

Teaching Witness: Um... the content is too much for them within the two-hour lessons. 

 (Interview _TW: 16&18) 

 From the observation by teaching witness, another difficulty encountered by 

students was adapting to graph-displayed questions instead of the usual equation-based 

questions. The teaching witness observed that students were shocked when first 

introduced to these types of questions.  

 

Teaching Witness: The students were shocked when first saw the questions. We seldom 

ask them to differentiate it by just looking at the graph. 

Teaching Witness: I mean the function without equation given but just the graph. 

  (Interview_TW:58& 62) 

 

 The third theme involved suggestions from the teaching witness for refining the 

instructional lesson to better suit students' needs. One suggestion was to have only one 

person, such as a group leader in submitting answers for group activities on the Desmos 

platform. This is to allow other students to focus on discussions.  

 

Researcher  : Is there any suggestion for improvement for this lesson? 

Teaching Witness: Okay, for this lesson, regarding the group activity, I think it's better 

if only the leader of a group can access and submit the answers. 

 (Interview_TW: 72-73) 
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 Another suggestion was to enhance the use of Desmos for better teaching practices, 

such as incorporating an online whiteboard feature or a draft box for side-by-side 

calculations. The teaching witness praised the platform's ability to share student answers 

anonymously through the teacher dashboard.  

 

Teaching Witness: Erm… I’m not sure whether it can be done or not. Maybe there are 

other features that we can add to Desmos, such as a blank 

whiteboard or draft box. 

Researcher : Okay… 

Teaching Witness: We can arrange it in a side-by-side view, with what you are currently 

teaching on one side and another view for the whiteboard or the 

blank screen. 

 (Interview _TW: 84-88) 

 

Teaching Witness: I observed that after you finished any exercises, the students can 

share their solution on the instructor’s screen. Everyone can also 

refer to it. I believed that if we continue using this app in the teaching 

and learning, it will be able to minimize the time taken by the 

instructor to explain. 

  (Interview _TW: 98-99) 

 

Retrospective Analysis and Refinement 

Table 4 presented the retrospective analysis comparing the Hypothetical Learning 

Trajectory (HLT) with the Actual Learning Trajectory (ALT). 

 

Table 4: Retrospective Analysis Outcomes  
Task formulation Hypothetical Learning Trajectory 

Conjecture of how the lesson be conducted 
Introduction 1. The instructor helps the students recall their knowledge about the definition 

of the derivative of a function. 
Lesson Content 1. The instructor demonstrates several graphs, including linear, quadratic, and 

cubic graphs, on the Desmos platform. 

2. The instructor guides students in determining the increasing and decreasing 

intervals for the displayed graphs. 

3. The instructor helps students relate the positive/negative values of the 

derivative function to the increasing/decreasing intervals of the functions. 
Classroom 

Discussion 
1. Students are divided into groups to discuss the Matching Graph Cards activity 

on the Desmos platform. 

2. The instructor monitors their strategies and progress through the Teacher 

Dashboard on the Desmos platform. 
Take-home 

Exercises 
The instructor gives the Desmos link to the students to complete the task at 

home. 
Source: Authors’ work 

   

Several important refinements were made to this lesson after compiling and analysing 

the data obtained from classroom observations, student work, feedback from teaching 

witnesses through interviews, and retrospective analysis of the HLTs and ALTs. One 

significant change was the reduction of the lesson content from covering all three types 

of functions to focusing on just two types, which are linear and quadratic functions with 

their derivatives. This adjustment was made because observations and interviews with 
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teaching witnesses revealed that the original content was too extensive for a two-hour 

lesson, making it difficult for students to process and understand the material effectively. 

 By emphasizing these two types of functions, it is believed that students will be 

able to focus better and learn the important properties of the graphs of linear and 

quadratic functions and their derivatives. Once students have a solid understanding of 

these concepts, they can then apply what they have learned to cubic functions and their 

derivatives. 

 Additionally, based on a recommendation from a teaching witness, a draft box was 

added to the slides of the Desmos instructional lesson. The draft box allows students to 

draft their answers without submitting them to the teacher dashboard for sharing with 

their classmates. This feature helps students prepare their solutions more comfortably 

and allows the instructor to review only the completed final solutions. Figure 4 illustrates 

the overview of the slides before refinement, while Figure 5 shows the interface of the 

slide after amendments to the DCIL lesson. 

 

 
Figure 4: The Interface of the Slide before Refinement 

Source: Authors’ work 

 

 
Figure 5: The Interface of the Slide after Refinement 

Source: Authors’ work 

 

 

 

Discussion 
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From the diagnostic test results, it was observed that less than 4% of students were able 

to achieve the Object and Schema levels of understanding in Questions 4 and 5, which 

involved graphing problems and applications of differential calculus. This finding was 

reinforced through classroom observations and analysis of students' work on the Desmos 

platform. These observations revealed that most students demonstrated proficiency only 

at the Process level of understanding. This indicates a significant initial deficiency in 

students’ understanding of differential calculus concepts. Similar trends have been 

reported in previous studies by Nagle et al. (2019), and Maharaj and Ntuli (2018) who 

also found that most participants operated predominantly at the Process level when 

engaging with calculus concepts. 

 Interviews with the teaching witness highlighted the effectiveness of the 

Differential Calculus Instructional Lesson (DCIL) in allowing students to visualise and 

manipulate graphs on the Desmos platform. This method contrasts with traditional 

approaches, where students rely solely on verbal explanations and are required to 

mentally imagine graphs. The practical hands-on approach aligns with Yimer's (2022) 

findings which demonstrated that integrating cooperative learning with GeoGebra 

enabled students to better visualise abstract concepts through technology. Furthermore, 

Rolf and Slocum (2021) emphasized that effective instructional lessons depend on 

strong interaction between instructors and students, a criterion the DCIL successfully 

fulfilled according to the teaching witness. Another strength of the DCIL is its iterative 

and flexible design process, which supports continuous refinement and adaptation to 

address students' learning needs. This reflects key characteristics of design-based 

research as outlined by Bakker and van Eerde (2015) and Wittmann (2019), emphasizing 

the importance of ongoing development, implementation, and evaluation of instructional 

materials and their impact on students' learning processes. 

 Despite its strengths, the teaching witness identified several areas for improvement 

in the DCIL. One notable challenge was the inability to complete all tasks within the 

two-hour lesson timeframe. Keiser and Lambdin (1996) observed that innovations in 

mathematics teaching often require more time due to the incorporation of diverse 

strategies and assessment approaches. Similarly, the Organisation for Economic Co-

operation and Development (2020) warned that attempting to cover both the depth and 

breadth of content within constrained timeframes can lead to content overload. To 

address this, it is essential to plan carefully when designing new interventions in teaching 

and learning. Another issue noted was that students struggled with graph-based 

questions when equations were not explicitly provided. Habre and Abboud (2006) 

mentioned that traditional approaches focusing solely on memorising formulas and 

symbolic aspects hinder students' understanding and visualisation of graph properties. 

This lack of familiarity hindered students’ initial adaptation to the DCIL instructional 

lesson. 

 One recommendation from the teaching witness on suggestions for refining the 

instructional lesson was to implement task distribution among group members. 

Assigning specific roles within groups encourages better engagement in discussions and 

collaborative work. This approach is supported by Bénéteau, Guadarrama, Guerra, Lenz, 

Lewis, and Straumanis (2017), who found that assigning roles fosters communication 

skills and increases engagement through structured practice. Another critical suggestion 

was the need for educators to develop a deeper understanding of Desmos' functionalities. 

Research by Shé, Bhaird, et al. (2023) and Shé, Fhloinn, et al. (2023) highlighted the 

importance of integrating technology into academic environments to engage students 
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effectively. Future instructional designs could benefit from incorporating more 

advanced functionalities of platforms like Desmos, further enhancing their effectiveness 

in teaching complex mathematical concepts. 

 

Limitation/Implications/Conclusion 

 

This study aimed to design DCIL, an instructional lesson with activities facilitated by 

Desmos Classroom Activities to explore pre-university students' understanding of 

differential calculus concepts. To achieve this, a methodology integrating Asiala’s 

APOS theoretical analysis with Merrill's First Principles of Instruction and a 

hypothetical learning trajectory based on design-based research was used to design 

DCIL. The refinement was finalised after a teaching experiment and based on the data 

analysis obtained to create a better instructional lesson that suits the students’ needs and 

their mental constructions. This study has significant benefits for curriculum developers, 

pre-university lecturers or instructors, and students. It provides valuable insights for 

curriculum developers and instructors on how to incorporate technology such as Desmos 

into differential calculus curriculum and lessons. It offers guidelines for implementing 

design-based instructional strategies in mathematics lessons. Most importantly, this 

study provides the greatest benefit for students, allowing them to experience different 

learning strategies where DCIL offers visualisation for learning differential calculus and 

engages them in a more interactive learning environment. By addressing its current 

limitations and leveraging technology effectively, the instructional design using design-

based research approach can better support students in achieving higher levels of 

understanding in in challenging mathematics topics like differential calculus. 
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